Skip to main content
Top
Published in: Journal of Translational Medicine 1/2015

Open Access 01-12-2015 | Research

Cotton rat immune responses to virus-like particles containing the pre-fusion form of respiratory syncytial virus fusion protein

Authors: Lori McGinnes Cullen, Jorge C. G. Blanco, Trudy G. Morrison

Published in: Journal of Translational Medicine | Issue 1/2015

Login to get access

Abstract

Background

Virus-like particles (VLPs) based on Newcastle disease virus (NDV) core proteins, M and NP, and containing two chimera proteins, F/F and H/G, composed of the respiratory syncytial virus (RSV) fusion protein (F) and glycoprotein (G) ectodomains fused to the transmembrane and cytoplasmic domains of the NDV F and HN proteins, respectively, stimulate durable, protective anti-RSV neutralizing antibodies in mice. Furthermore, immunization of mice with a VLP containing a F/F chimera protein with modifications previously reported to stabilize the pre-fusion form of the RSV F protein resulted in significantly improved neutralizing antibody titers over VLPs containing the wild type F protein. The goal of this study was to determine if VLPs containing the pre-fusion form of the RSV F protein stimulated protective immune responses in cotton rats, a more RSV permissive animal model than mice.

Methods

Cotton rats were immunized intramuscularly with VLPs containing stabilized pre-fusion F/F chimera protein as well as the H/G chimera protein. The anti-RSV F and RSV G antibody responses were determined by ELISA. Neutralizing antibody titers in sera of immunized animals were determined in plaque reduction assays. Protection of the animals from RSV challenge was assessed. The safety of the VLP vaccine was determined by monitoring lung pathology upon RSV challenge of immunized animals.

Results

The Pre-F/F VLP induced neutralizing titers that were well above minimum levels previously proposed to be required for a successful vaccine and titers significantly higher than those stimulated by RSV infection. In addition, Pre-F/F VLP immunization stimulated higher IgG titers to the soluble pre-fusion F protein than RSV infection. Cotton rats immunized with Pre-F/F VLPs were protected from RSV challenge, and, importantly, the VLP immunization did not result in enhanced respiratory disease upon RSV challenge.

Conclusions

VLPs containing the pre-fusion RSV F protein have characteristics required for a safe, effective RSV vaccine.
Literature
1.
go back to reference Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545–55.PubMedCentralCrossRefPubMed Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375(9725):1545–55.PubMedCentralCrossRefPubMed
2.
go back to reference Han LL, Alexander JP, Anderson LJ. Respiratory syncytial virus pneumonia among the elderly: an assessment of disease burden. J Infect Dis. 1999;179:25–30.CrossRefPubMed Han LL, Alexander JP, Anderson LJ. Respiratory syncytial virus pneumonia among the elderly: an assessment of disease burden. J Infect Dis. 1999;179:25–30.CrossRefPubMed
3.
go back to reference Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352:1749–59.CrossRefPubMed Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352:1749–59.CrossRefPubMed
5.
go back to reference Raboni SM, Nogueira MB, Tsuchiya LR, Takahashi GA, Pereira LA, Pasquini R. Respiratory tract viral infections in bone marrow transplant patients. Transplant. 2003;76:142–6.CrossRef Raboni SM, Nogueira MB, Tsuchiya LR, Takahashi GA, Pereira LA, Pasquini R. Respiratory tract viral infections in bone marrow transplant patients. Transplant. 2003;76:142–6.CrossRef
6.
go back to reference Walsh EE, Falsey AR, Hennessey PA. Respiratory syncytial and other virus infections in persons with chronic cardiopulmonary disease. Am J Respir Crit Care Med. 1999;160:791–5.CrossRefPubMed Walsh EE, Falsey AR, Hennessey PA. Respiratory syncytial and other virus infections in persons with chronic cardiopulmonary disease. Am J Respir Crit Care Med. 1999;160:791–5.CrossRefPubMed
7.
8.
go back to reference Hall CB, Long CE, Schnabel KD. Respiratory syncytial virus infections in previously healthy working adults. Clin Infect Dis. 2001;33:792–6.CrossRefPubMed Hall CB, Long CE, Schnabel KD. Respiratory syncytial virus infections in previously healthy working adults. Clin Infect Dis. 2001;33:792–6.CrossRefPubMed
9.
go back to reference Power UF. Respiratory syncytial virus (RSV) vaccines–Two steps back for one leap forward. J Clin Virol. 2008;41:38–44.CrossRefPubMed Power UF. Respiratory syncytial virus (RSV) vaccines–Two steps back for one leap forward. J Clin Virol. 2008;41:38–44.CrossRefPubMed
10.
go back to reference Morrison TG, Walsh EE. Subunit and Virus-like Particle Vaccine Approached for Respiratory Syncytial Virus. In: Anderson LJ, Graham BS, editors. Challenges and opportunities for respiratory syncytial virus vaccines. Heidelberg, Berlin: Springer; 2013. p. 285–306.CrossRef Morrison TG, Walsh EE. Subunit and Virus-like Particle Vaccine Approached for Respiratory Syncytial Virus. In: Anderson LJ, Graham BS, editors. Challenges and opportunities for respiratory syncytial virus vaccines. Heidelberg, Berlin: Springer; 2013. p. 285–306.CrossRef
13.
go back to reference Lamb RA, Parks GD. Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B et al., editors. Fields Virology. Fifth Edition ed. Philadelphia: Lippincott Williams &Wilkins. 2007;1450–96. Lamb RA, Parks GD. Paramyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B et al., editors. Fields Virology. Fifth Edition ed. Philadelphia: Lippincott Williams &Wilkins. 2007;1450–96.
14.
go back to reference Yin H-S, Paterson RG, Wen X, Lamb RA, Jardetzky TS. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci USA. 2005;102:9288–93.PubMedCentralCrossRefPubMed Yin H-S, Paterson RG, Wen X, Lamb RA, Jardetzky TS. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci USA. 2005;102:9288–93.PubMedCentralCrossRefPubMed
15.
go back to reference Yin H-S, Wen X, Paterson RG, Lamb RA, Jardetzky TS. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature. 2006;439:38–44.CrossRefPubMed Yin H-S, Wen X, Paterson RG, Lamb RA, Jardetzky TS. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature. 2006;439:38–44.CrossRefPubMed
16.
go back to reference Swanson KA, Settembre EC, Shaw CA, Dey AK, Rappuoli R, Mandl CW, et al. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc Natl Acad Sci USA. 2011;108(23):9619–24. doi:10.1073/pnas.1106536108.PubMedCentralCrossRefPubMed Swanson KA, Settembre EC, Shaw CA, Dey AK, Rappuoli R, Mandl CW, et al. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers. Proc Natl Acad Sci USA. 2011;108(23):9619–24. doi:10.​1073/​pnas.​1106536108.PubMedCentralCrossRefPubMed
20.
go back to reference Magro M, Mas V, Chappell K, Vazquez M, Cano O, Luque D, et al. Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc Natl Acad Sci. 2012;109(8):3089–94. doi:10.1073/pnas.1115941109.PubMedCentralCrossRefPubMed Magro M, Mas V, Chappell K, Vazquez M, Cano O, Luque D, et al. Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc Natl Acad Sci. 2012;109(8):3089–94. doi:10.​1073/​pnas.​1115941109.PubMedCentralCrossRefPubMed
22.
go back to reference McGinnes LW, Gravel KA, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, et al. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J Virol. 2011;85:366–77. doi:10.1128/jvi.01861-10.PubMedCentralCrossRefPubMed McGinnes LW, Gravel KA, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, et al. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J Virol. 2011;85:366–77. doi:10.​1128/​jvi.​01861-10.PubMedCentralCrossRefPubMed
23.
go back to reference Murawski MR, McGinnes LW, Finberg RW, Kurt-Jones EA, Massare M, Smith G, et al. Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice with no evidence of immunopathology. J Virol. 2010;84:1110–23.PubMedCentralCrossRefPubMed Murawski MR, McGinnes LW, Finberg RW, Kurt-Jones EA, Massare M, Smith G, et al. Newcastle disease virus-like particles containing respiratory syncytial virus G protein induced protection in BALB/c mice with no evidence of immunopathology. J Virol. 2010;84:1110–23.PubMedCentralCrossRefPubMed
24.
go back to reference Jennings GT, Bachmann MF. The coming of age of virus-like particle vaccines. Biol Chem. 2008;389:521–36.CrossRefPubMed Jennings GT, Bachmann MF. The coming of age of virus-like particle vaccines. Biol Chem. 2008;389:521–36.CrossRefPubMed
25.
go back to reference Noad R, Roy P. Virus-like particles as immunogens. Trends in Microbiol. 2003;11:438–44.CrossRef Noad R, Roy P. Virus-like particles as immunogens. Trends in Microbiol. 2003;11:438–44.CrossRef
26.
go back to reference Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787–96.CrossRefPubMed Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787–96.CrossRefPubMed
27.
go back to reference McGinnes-Cullen L, Schmidt MR, Kenward SA, Woodland RT, Morrison TG. Murine Immune Responses to Virus-Like Particle-Associated Pre- and Postfusion Forms of the Respiratory Syncytial Virus F Protein. J of Virol. 2015;89(13):6835–47.CrossRef McGinnes-Cullen L, Schmidt MR, Kenward SA, Woodland RT, Morrison TG. Murine Immune Responses to Virus-Like Particle-Associated Pre- and Postfusion Forms of the Respiratory Syncytial Virus F Protein. J of Virol. 2015;89(13):6835–47.CrossRef
28.
go back to reference Boukhvalova MS, Blanco J. The cotton rat Sigmondon Hispidus model of respiratory syncytial virus infection. In: Anderson LJ, Graham BS, editors. Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Berlin Heidelberg: Springer-Verlag; 2013. Boukhvalova MS, Blanco J. The cotton rat Sigmondon Hispidus model of respiratory syncytial virus infection. In: Anderson LJ, Graham BS, editors. Challenges and Opportunities for Respiratory Syncytial Virus Vaccines. Berlin Heidelberg: Springer-Verlag; 2013.
29.
go back to reference Pantua HD, McGinnes LW, Peeples ME, Morrison TG. Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol. 2006;80:11062–73.PubMedCentralCrossRefPubMed Pantua HD, McGinnes LW, Peeples ME, Morrison TG. Requirements for the assembly and release of Newcastle disease virus-like particles. J Virol. 2006;80:11062–73.PubMedCentralCrossRefPubMed
30.
go back to reference Frank S, Kammerer RA, Mechling D, Schulthess T, Landwehr R, Bann J, et al. Stabilization of short collagen-like triple helices by protein engineering. J Mol Biol. 2001;308:1081–9.CrossRefPubMed Frank S, Kammerer RA, Mechling D, Schulthess T, Landwehr R, Bann J, et al. Stabilization of short collagen-like triple helices by protein engineering. J Mol Biol. 2001;308:1081–9.CrossRefPubMed
31.
go back to reference Beeler JA, van Wyke Coelingh K. Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function. J Virol. 1989;63(7):2941–50.PubMedCentralPubMed Beeler JA, van Wyke Coelingh K. Neutralization epitopes of the F glycoprotein of respiratory syncytial virus: effect of mutation upon fusion function. J Virol. 1989;63(7):2941–50.PubMedCentralPubMed
32.
go back to reference McGinnes LW, Morrison TG. Current Protocols in Microbiology., Newcastle Disease Virus-Like Particles: Preparation, Purification, Quantification, and Incorporation of Foreign GlycoproteinsUSA: Wiley; 2013. McGinnes LW, Morrison TG. Current Protocols in Microbiology., Newcastle Disease Virus-Like Particles: Preparation, Purification, Quantification, and Incorporation of Foreign GlycoproteinsUSA: Wiley; 2013.
33.
go back to reference Prince GA, Jenson AB, Horswood RL, Camargo E, Chanock RM. The pathogenesis of respiratory syncytial virus infection in cotton rats. Am J Path. 1978;93(3):771–91.PubMedCentralPubMed Prince GA, Jenson AB, Horswood RL, Camargo E, Chanock RM. The pathogenesis of respiratory syncytial virus infection in cotton rats. Am J Path. 1978;93(3):771–91.PubMedCentralPubMed
34.
go back to reference Prince GA, Curtis SJ, Yim KC, Porter DD. Vaccine-enhanced respiratory syncytial virus disease in cotton rats following immunization with Lot 100 or a newly prepared reference vaccine. J Gen Virol. 2001;82:2881–8.CrossRefPubMed Prince GA, Curtis SJ, Yim KC, Porter DD. Vaccine-enhanced respiratory syncytial virus disease in cotton rats following immunization with Lot 100 or a newly prepared reference vaccine. J Gen Virol. 2001;82:2881–8.CrossRefPubMed
37.
go back to reference Piedra PA, Jewell AM, Cron SG, Atmar RL. Paul Glezen W. Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: establishment of minimum protective threshold levels of serum neutralizing antibodies. Vaccine. 2003;21(24):3479–82. doi:10.1016/S0264-410X(03)00355-4.CrossRefPubMed Piedra PA, Jewell AM, Cron SG, Atmar RL. Paul Glezen W. Correlates of immunity to respiratory syncytial virus (RSV) associated-hospitalization: establishment of minimum protective threshold levels of serum neutralizing antibodies. Vaccine. 2003;21(24):3479–82. doi:10.​1016/​S0264-410X(03)00355-4.CrossRefPubMed
38.
go back to reference Siber GR, Leombruno D, Leszczynski J, McIver J, Bodkin D, Gonin R, et al. Comparison of antibody concentrations and protective activity of respiratory syncytial virus immune globulin and conventional immune globulin. J Infect Dis. 1994;169(6):1368–73. doi:10.1093/infdis/169.6.1368.CrossRefPubMed Siber GR, Leombruno D, Leszczynski J, McIver J, Bodkin D, Gonin R, et al. Comparison of antibody concentrations and protective activity of respiratory syncytial virus immune globulin and conventional immune globulin. J Infect Dis. 1994;169(6):1368–73. doi:10.​1093/​infdis/​169.​6.​1368.CrossRefPubMed
39.
go back to reference Prince GA, Hemming VG, Horswood RL, Chanock RM. Immunoprophylaxis and immunotherapy of respiratory syncytial virus infection in the cotton rat. Virus Res. 1985;3:193–206.CrossRefPubMed Prince GA, Hemming VG, Horswood RL, Chanock RM. Immunoprophylaxis and immunotherapy of respiratory syncytial virus infection in the cotton rat. Virus Res. 1985;3:193–206.CrossRefPubMed
40.
go back to reference Miao C, Radu GU, Caidi H, Tripp RA, Anderson LJ, Haynes LM. Treatment with respiratory syncytial virus G glycoprotein monoclonal antibody or F(ab’)2 components mediated reduced pulmonary inflammation in mice. J Gen Virol. 2009;90:1119–23.PubMedCentralCrossRefPubMed Miao C, Radu GU, Caidi H, Tripp RA, Anderson LJ, Haynes LM. Treatment with respiratory syncytial virus G glycoprotein monoclonal antibody or F(ab’)2 components mediated reduced pulmonary inflammation in mice. J Gen Virol. 2009;90:1119–23.PubMedCentralCrossRefPubMed
41.
go back to reference Radu GU, Caidi H, Miao C, Tripp RA, Anderson LJ, Haynes LM. Prophylactic treatment with a G glycoprotein monoclonal antibody reduces pulmonary inflammation in RSV challenged naive and formalin-inactivated RSV immunized BALB/c mice. J Virol. 2010:JVI.00451–10. doi:10.1128/jvi.00451-10. Radu GU, Caidi H, Miao C, Tripp RA, Anderson LJ, Haynes LM. Prophylactic treatment with a G glycoprotein monoclonal antibody reduces pulmonary inflammation in RSV challenged naive and formalin-inactivated RSV immunized BALB/c mice. J Virol. 2010:JVI.00451–10. doi:10.​1128/​jvi.​00451-10.
43.
44.
go back to reference Tripp RA, Moore D, Jones L, Sullender WM, Winter J, Anderson LJ. Respiratory syncytial virus G and/or SH protein alters Th1 cytokines, natural killer cells, and neutrophils responding to pulmonary infection in BALB/c mice. J Virol. 1999;73:7099–107.PubMedCentralPubMed Tripp RA, Moore D, Jones L, Sullender WM, Winter J, Anderson LJ. Respiratory syncytial virus G and/or SH protein alters Th1 cytokines, natural killer cells, and neutrophils responding to pulmonary infection in BALB/c mice. J Virol. 1999;73:7099–107.PubMedCentralPubMed
45.
46.
go back to reference Boyoglu-Barnum S, Chirkova T, Todd SO, Barnum TR, Gaston KA, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88(18):10569–83. doi:10.1128/jvi.01503-14.PubMedCentralCrossRefPubMed Boyoglu-Barnum S, Chirkova T, Todd SO, Barnum TR, Gaston KA, Jorquera P, et al. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol. 2014;88(18):10569–83. doi:10.​1128/​jvi.​01503-14.PubMedCentralCrossRefPubMed
47.
go back to reference Collins PL, Crowe JE. Respiratory syncytial virus and metapneumovirus. 5th ed. Fields Virology. Philadelphia: LippincottWilliams and Wilkins; 2007. Collins PL, Crowe JE. Respiratory syncytial virus and metapneumovirus. 5th ed. Fields Virology. Philadelphia: LippincottWilliams and Wilkins; 2007.
48.
go back to reference Littel-van den Hurk SD. Mapletoft JW, Arsic N, Kovacs-Nolan J. Immunopathology of RSV infection: prospects for developing vaccines without this complication. Rev Med Virol. 2007;17:5–34.CrossRef Littel-van den Hurk SD. Mapletoft JW, Arsic N, Kovacs-Nolan J. Immunopathology of RSV infection: prospects for developing vaccines without this complication. Rev Med Virol. 2007;17:5–34.CrossRef
49.
go back to reference Openshaw PJ, Culley FJ, Olszewska W. Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine. 2002;20(suppl 1):S27–31. Openshaw PJ, Culley FJ, Olszewska W. Immunopathogenesis of vaccine-enhanced RSV disease. Vaccine. 2002;20(suppl 1):S27–31.
50.
go back to reference Openshaw PJ, Tregoning JS. Immune responses and disease enhancement during respiratory syncytial virus infection. Clin Microbiol Rev. 2005;18:541–55.PubMedCentralCrossRefPubMed Openshaw PJ, Tregoning JS. Immune responses and disease enhancement during respiratory syncytial virus infection. Clin Microbiol Rev. 2005;18:541–55.PubMedCentralCrossRefPubMed
51.
52.
go back to reference Connors M, Collins PL, Firestone C-Y, Sotnikov AV, Waitze A, Davis AR, et al. Cotton rats previously immunized with a chimeric RSV FG glycoprotein develop enhanced pulmonary pathology when infected with RSV, a phenomenon not encountered following immunization with vaccinia—RSV recombinants or RSV. Vaccine. 1992;10(7):475–84.CrossRefPubMed Connors M, Collins PL, Firestone C-Y, Sotnikov AV, Waitze A, Davis AR, et al. Cotton rats previously immunized with a chimeric RSV FG glycoprotein develop enhanced pulmonary pathology when infected with RSV, a phenomenon not encountered following immunization with vaccinia—RSV recombinants or RSV. Vaccine. 1992;10(7):475–84.CrossRefPubMed
53.
go back to reference Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nature Med. 2009;15:34–41.PubMedCentralCrossRefPubMed Delgado MF, Coviello S, Monsalvo AC, Melendi GA, Hernandez JZ, Batalle JP, et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nature Med. 2009;15:34–41.PubMedCentralCrossRefPubMed
54.
go back to reference Connors M. Pulmonary histopathology induced by respiratory synctial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of CD4 + T cells. J Virol. 1992;66:7444–51.PubMedCentralPubMed Connors M. Pulmonary histopathology induced by respiratory synctial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of CD4 + T cells. J Virol. 1992;66:7444–51.PubMedCentralPubMed
Metadata
Title
Cotton rat immune responses to virus-like particles containing the pre-fusion form of respiratory syncytial virus fusion protein
Authors
Lori McGinnes Cullen
Jorge C. G. Blanco
Trudy G. Morrison
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2015
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-015-0705-8

Other articles of this Issue 1/2015

Journal of Translational Medicine 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.