Skip to main content
Top
Published in: European Radiology 9/2014

01-09-2014 | Neuro

Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica

Authors: Yaou Liu, Teng Xie, Yong He, Yunyun Duan, Jing Huang, Zhuoqiong Ren, Gaolang Gong, Jun Wang, Jing Ye, Huiqing Dong, Helmut Butzkueven, Fu-Dong Shi, Ni Shu, Kuncheng Li

Published in: European Radiology | Issue 9/2014

Login to get access

Abstract

Objectives

To compare spatial patterns of cortical thickness alterations in neuromyelitis optica (NMO) and multiple sclerosis (MS); and to investigate the correlations between cortical thinning and clinical variables in NMO and MS.

Methods

We studied 23 patients with NMO, 27 patients with MS and 26 healthy controls (HCs). The global, brain region and vertex-based cortical thickness (CTh) were analysed and compared among the three groups. A general linear model was used to investigate the correlations between cortical thinning and clinical measures.

Results

A limited number of cortical regions in visual cortex were found to be significantly thinner in NMO patients than in HCs. The MS patients exhibited more widespread cortical thinning compared with HCs, and significantly greater cortical thinning in the insula and the parahippocampus compared with NMO. The extent of cortical thinning in several brain regions correlated with cognitive measures in MS, but not in NMO.

Conclusions

Neocortical thinning in NMO mainly affects visual cortex, while MS patients show much more extensive cortical thinning. Cognitive changes are correlated with cortical atrophy in MS not in NMO. The substrates of cognitive changes in MS and NMO could therefore be different.

Key Points

MS patients show much more extensive cortical thinning than NMO.
Cortical thinning of insula and parahippocampus particularly distinguishes MS from NMO.
Cognitive changes are correlated with cortical atrophy in MS but not in NMO.
Literature
1.
go back to reference Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815PubMedCrossRef Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6:805–815PubMedCrossRef
2.
go back to reference Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66:1485–1489PubMedCrossRef Wingerchuk DM, Lennon VA, Pittock SJ, Lucchinetti CF, Weinshenker BG (2006) Revised diagnostic criteria for neuromyelitis optica. Neurology 66:1485–1489PubMedCrossRef
3.
go back to reference Pittock SJ, Lennon VA, Krecke K, Wingerchuk DM, Lucchinetti CF, Weinshenker BG (2006) Brain abnormalities in neuromyelitis optica. Arch Neurol 63:390–396PubMedCrossRef Pittock SJ, Lennon VA, Krecke K, Wingerchuk DM, Lucchinetti CF, Weinshenker BG (2006) Brain abnormalities in neuromyelitis optica. Arch Neurol 63:390–396PubMedCrossRef
4.
go back to reference Rocca MA, Agosta F, Mezzapesa DM et al (2004) A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica. Neuroimage 21:1061–1068PubMedCrossRef Rocca MA, Agosta F, Mezzapesa DM et al (2004) A functional MRI study of movement-associated cortical changes in patients with Devic's neuromyelitis optica. Neuroimage 21:1061–1068PubMedCrossRef
5.
go back to reference Rocca MA, Agosta F, Mezzapesa DM et al (2004) Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica. Neurology 62:476–478PubMedCrossRef Rocca MA, Agosta F, Mezzapesa DM et al (2004) Magnetization transfer and diffusion tensor MRI show gray matter damage in neuromyelitis optica. Neurology 62:476–478PubMedCrossRef
6.
go back to reference Liu Y, Duan Y, He Y et al (2012) A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations. Mult Scler 18:1013–1021PubMedCrossRef Liu Y, Duan Y, He Y et al (2012) A tract-based diffusion study of cerebral white matter in neuromyelitis optica reveals widespread pathological alterations. Mult Scler 18:1013–1021PubMedCrossRef
7.
go back to reference Blanc F, Zephir H, Lebrun C et al (2008) Cognitive functions in neuromyelitis optica. Arch Neurol 65:84–88PubMed Blanc F, Zephir H, Lebrun C et al (2008) Cognitive functions in neuromyelitis optica. Arch Neurol 65:84–88PubMed
9.
go back to reference Yu C, Lin F, Li K et al (2008) Pathogenesis of normal-appearing white matter damage in neuromyelitis optica: diffusion-tensor MR imaging. Radiology 246:222–228PubMedCrossRef Yu C, Lin F, Li K et al (2008) Pathogenesis of normal-appearing white matter damage in neuromyelitis optica: diffusion-tensor MR imaging. Radiology 246:222–228PubMedCrossRef
10.
go back to reference Liu Y, Duan Y, He Y et al (2012) Altered topological organization of white matter structural networks in patients with neuromyelitis optica. PLoS One 7:e48846PubMedCentralPubMedCrossRef Liu Y, Duan Y, He Y et al (2012) Altered topological organization of white matter structural networks in patients with neuromyelitis optica. PLoS One 7:e48846PubMedCentralPubMedCrossRef
11.
go back to reference Duan Y, Liu Y, Liang P et al (2012) Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: a voxel-based morphometry study. Eur J Radiol 81:e110–e114PubMedCrossRef Duan Y, Liu Y, Liang P et al (2012) Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: a voxel-based morphometry study. Eur J Radiol 81:e110–e114PubMedCrossRef
13.
go back to reference Chanson JB, Lamy J, Rousseau F et al (2013) White matter volume is decreased in the brain of patients with neuromyelitis optica. Eur J Neurol 20:361–367PubMedCrossRef Chanson JB, Lamy J, Rousseau F et al (2013) White matter volume is decreased in the brain of patients with neuromyelitis optica. Eur J Neurol 20:361–367PubMedCrossRef
14.
go back to reference Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001PubMedCrossRef Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC (2005) Focal decline of cortical thickness in Alzheimer's disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001PubMedCrossRef
15.
go back to reference Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055PubMedCentralPubMedCrossRef Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 97:11050–11055PubMedCentralPubMedCrossRef
16.
go back to reference Calabrese M, Agosta F, Rinaldi F et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66:1144–1150PubMedCrossRef Calabrese M, Agosta F, Rinaldi F et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66:1144–1150PubMedCrossRef
17.
go back to reference Calabrese M, Rinaldi F, Mattisi I et al (2010) Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74:321–328PubMedCrossRef Calabrese M, Rinaldi F, Mattisi I et al (2010) Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74:321–328PubMedCrossRef
18.
go back to reference Sailer M, Fischl B, Salat D et al (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734–1744PubMedCrossRef Sailer M, Fischl B, Salat D et al (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734–1744PubMedCrossRef
19.
go back to reference Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ (2006) Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 129:2885–2893PubMedCrossRef Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ (2006) Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 129:2885–2893PubMedCrossRef
20.
go back to reference Calabrese M, Oh MS, Favaretto A et al (2012) No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 79:1671–1676PubMedCrossRef Calabrese M, Oh MS, Favaretto A et al (2012) No MRI evidence of cortical lesions in neuromyelitis optica. Neurology 79:1671–1676PubMedCrossRef
21.
go back to reference Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151PubMedCrossRef Chiaravalloti ND, DeLuca J (2008) Cognitive impairment in multiple sclerosis. Lancet Neurol 7:1139–1151PubMedCrossRef
22.
go back to reference Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846PubMedCrossRef Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846PubMedCrossRef
23.
go back to reference Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97PubMedCrossRef Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97PubMedCrossRef
24.
go back to reference Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21:1280–1291PubMedCrossRef Zijdenbos AP, Forghani R, Evans AC (2002) Automatic “pipeline” analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 21:1280–1291PubMedCrossRef
25.
go back to reference MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12:340–356PubMedCrossRef MacDonald D, Kabani N, Avis D, Evans AC (2000) Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI. Neuroimage 12:340–356PubMedCrossRef
26.
go back to reference Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173PubMedCrossRef Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173PubMedCrossRef
27.
go back to reference Chung MK, Worsley KJ, Robbins S et al (2003) Deformation-based surface morphometry applied to gray matter deformation. Neuroimage 18:198–213PubMedCrossRef Chung MK, Worsley KJ, Robbins S et al (2003) Deformation-based surface morphometry applied to gray matter deformation. Neuroimage 18:198–213PubMedCrossRef
28.
go back to reference Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13:375–380PubMedCrossRef Kabani N, Le Goualher G, MacDonald D, Evans AC (2001) Measurement of cortical thickness using an automated 3-D algorithm: a validation study. Neuroimage 13:375–380PubMedCrossRef
29.
go back to reference Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley KJ, Evans AC (2007) Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage 34:509–517PubMedCrossRef Charil A, Dagher A, Lerch JP, Zijdenbos AP, Worsley KJ, Evans AC (2007) Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage 34:509–517PubMedCrossRef
30.
go back to reference Querbes O, Aubry F, Pariente J et al (2009) Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 132:2036–2047PubMedCentralPubMedCrossRef Querbes O, Aubry F, Pariente J et al (2009) Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 132:2036–2047PubMedCentralPubMedCrossRef
31.
go back to reference Voineskos AN, Foussias G, Lerch J et al (2013) Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiatry 70:472–480PubMedCrossRef Voineskos AN, Foussias G, Lerch J et al (2013) Neuroimaging evidence for the deficit subtype of schizophrenia. JAMA Psychiatry 70:472–480PubMedCrossRef
32.
go back to reference von Glehn F, Jarius S, Cavalcanti Lira RP et al (2014) Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders. Mult Scler von Glehn F, Jarius S, Cavalcanti Lira RP et al (2014) Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders. Mult Scler
33.
go back to reference Ceccarelli A, Rocca MA, Pagani E et al (2008) A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 42:315–322PubMedCrossRef Ceccarelli A, Rocca MA, Pagani E et al (2008) A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 42:315–322PubMedCrossRef
34.
go back to reference Saji E, Arakawa M, Yanagawa K et al (2013) Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol 73:65–76PubMedCrossRef Saji E, Arakawa M, Yanagawa K et al (2013) Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol 73:65–76PubMedCrossRef
35.
go back to reference Rueda Lopes FC, Doring T, Martins C et al (2012) The role of demyelination in neuromyelitis optica damage: diffusion-tensor MR imaging study. Radiology 263:235–242PubMedCrossRef Rueda Lopes FC, Doring T, Martins C et al (2012) The role of demyelination in neuromyelitis optica damage: diffusion-tensor MR imaging study. Radiology 263:235–242PubMedCrossRef
36.
go back to reference Suzuki M, Obara K, Sasaki Y et al (2003) Comparison of perivascular astrocytic structure between white matter and gray matter of rats. Brain Res 992:294–297PubMed Suzuki M, Obara K, Sasaki Y et al (2003) Comparison of perivascular astrocytic structure between white matter and gray matter of rats. Brain Res 992:294–297PubMed
37.
go back to reference Rossi A, Crane JM, Verkman AS (2011) Aquaporin-4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding. Glia 59:1056–1063PubMedCentralPubMedCrossRef Rossi A, Crane JM, Verkman AS (2011) Aquaporin-4 Mz isoform: brain expression, supramolecular assembly and neuromyelitis optica antibody binding. Glia 59:1056–1063PubMedCentralPubMedCrossRef
38.
39.
go back to reference Filippi M, Rocca MA, Benedict RH et al (2010) The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 75:2121–2128PubMedCentralPubMedCrossRef Filippi M, Rocca MA, Benedict RH et al (2010) The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 75:2121–2128PubMedCentralPubMedCrossRef
40.
go back to reference Hulst HE, Steenwijk MD, Versteeg A et al (2013) Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 80:1025–1032PubMedCrossRef Hulst HE, Steenwijk MD, Versteeg A et al (2013) Cognitive impairment in MS: impact of white matter integrity, gray matter volume, and lesions. Neurology 80:1025–1032PubMedCrossRef
Metadata
Title
Cortical Thinning Correlates with Cognitive Change in Multiple Sclerosis but not in Neuromyelitis Optica
Authors
Yaou Liu
Teng Xie
Yong He
Yunyun Duan
Jing Huang
Zhuoqiong Ren
Gaolang Gong
Jun Wang
Jing Ye
Huiqing Dong
Helmut Butzkueven
Fu-Dong Shi
Ni Shu
Kuncheng Li
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2014
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3239-1

Other articles of this Issue 9/2014

European Radiology 9/2014 Go to the issue