Skip to main content
Top
Published in: Calcified Tissue International 4/2015

01-04-2015 | Original Research

Cortical Bone Histomorphometry in Male Femoral Neck: The Investigation of Age-Association and Regional Differences

Authors: Xiaoyu Tong, Inari S. Burton, Hanna Isaksson, Jukka S. Jurvelin, Heikki Kröger

Published in: Calcified Tissue International | Issue 4/2015

Login to get access

Abstract

Low bone volume and changes in bone quality or microarchitecture may predispose individuals to fragility fractures. As the dominant component of the human skeleton, cortical bone plays a key role in protecting bones from fracture. However, histological investigations of the underlying structural changes, which might predispose to fracture, have been largely limited to the cancellous bone. The aim of this study was to investigate the age-association and regional differences of histomorphometric properties in the femoral neck cortical bone. Undecalcified histological sections of the femoral neck (n = 20, aged 18–82 years, males) were cut (15 μm) and stained using modified Masson-Goldner stain. Complete femoral neck images were scanned, and cortical bone boundaries were defined using our previously established method. Cortical bone histomorphometry was performed with low (×50) and high magnification (×100). Most parameters related to cortical width (Mean Ct.Wi, Inferior Ct.Wi, Superior Ct.Wi) were negatively associated with age both before and after adjustment for height. The inferior cortex was the thickest (P < 0.001) and the superior cortex was the thinnest (P < 0.008) of all cortical regions. Both osteonal size and pores area were negatively associated with age. Osteonal area and number were higher in the antero-inferior area (P < 0.002) and infero-posterior area (P = 0.002) compared to the postero-superior area. The Haversian canal area was higher in the infero-posterior area compared to the postero-superior area (P = 0.002). Moreover, porosity was higher in the antero-superior area (P < 0.002), supero-anterior area (P < 0.002) and supero-posterior area (P < 0.002) compared to the infero-anterior area. Eroded endocortical perimeter (E.Pm/Ec.Pm) correlated positively with superior cortical width. This study describes the changes in cortical bone during ageing in healthy males. Further studies are needed to investigate whether these changes explain the increased susceptibility to femoral neck fractures.
Literature
1.
go back to reference Zebaze RM, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodelling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study. Lancet 375:1729–1736CrossRefPubMed Zebaze RM, Ghasem-Zadeh A, Bohte A et al (2010) Intracortical remodelling and porosity in the distal radius and postmortem femurs of women: a cross-sectional study. Lancet 375:1729–1736CrossRefPubMed
2.
go back to reference Rantalainen T, Nikander R, Heinonen A, Daly RM, Sievanen H (2011) An open source approach for regional cortical bone mineral density analysis. J Musculoskelet Neuronal Interact 11:243–248PubMed Rantalainen T, Nikander R, Heinonen A, Daly RM, Sievanen H (2011) An open source approach for regional cortical bone mineral density analysis. J Musculoskelet Neuronal Interact 11:243–248PubMed
3.
go back to reference Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence an economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475CrossRefPubMed Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence an economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475CrossRefPubMed
4.
go back to reference Barrett-Connor E (1995) The economic and human costs of osteoporotic fracture. Am J Med 98(Suppl 2A):3S–8SCrossRefPubMed Barrett-Connor E (1995) The economic and human costs of osteoporotic fracture. Am J Med 98(Suppl 2A):3S–8SCrossRefPubMed
5.
go back to reference Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993CrossRefPubMedCentralPubMed Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993CrossRefPubMedCentralPubMed
6.
go back to reference Kaptoge S, Beck TJ, Reeve J et al (2008) Prediction of Incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904CrossRefPubMedCentralPubMed Kaptoge S, Beck TJ, Reeve J et al (2008) Prediction of Incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904CrossRefPubMedCentralPubMed
7.
go back to reference Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY (2013) Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013:213–234 Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY (2013) Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol 2013:213–234
8.
go back to reference Manske SL, Liu-Ambrose T, Cooper DM et al (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20:445–453CrossRefPubMed Manske SL, Liu-Ambrose T, Cooper DM et al (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20:445–453CrossRefPubMed
9.
go back to reference Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, Reeve J (2000) Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone 26:305–313CrossRefPubMed Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, Reeve J (2000) Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone 26:305–313CrossRefPubMed
10.
go back to reference Bell KL, Loveridge N, Reeve J et al (2001) Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec 264:378–386CrossRefPubMed Bell KL, Loveridge N, Reeve J et al (2001) Super-osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec 264:378–386CrossRefPubMed
11.
go back to reference Koivumäki JE, Thevenot J, Pulkkinen P et al (2012) Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Bone 51:737–740CrossRefPubMed Koivumäki JE, Thevenot J, Pulkkinen P et al (2012) Cortical bone finite element models in the estimation of experimentally measured failure loads in the proximal femur. Bone 51:737–740CrossRefPubMed
12.
go back to reference Jee WSS (2001) Integrated bone tissue physiology: anatomy and physiology. Cowin SC, editor. CRC Press, New York Jee WSS (2001) Integrated bone tissue physiology: anatomy and physiology. Cowin SC, editor. CRC Press, New York
13.
go back to reference Bousson V, Le Bras A, Roqueplan F et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 17:855–864CrossRefPubMed Bousson V, Le Bras A, Roqueplan F et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int. 17:855–864CrossRefPubMed
15.
go back to reference Bouxsein ML, Fajardo RJ (2005) Cortical stability of the femoral neck and hip fracture risk. Lancet 366:1523–1524CrossRefPubMed Bouxsein ML, Fajardo RJ (2005) Cortical stability of the femoral neck and hip fracture risk. Lancet 366:1523–1524CrossRefPubMed
16.
go back to reference Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261CrossRefPubMed Lotz JC, Cheal EJ, Hayes WC (1995) Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos Int 5:252–261CrossRefPubMed
17.
go back to reference Bousson V, Peyrin F, Bergot C et al (2004) Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation. J Bone Miner Res 19:794–801CrossRefPubMed Bousson V, Peyrin F, Bergot C et al (2004) Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation. J Bone Miner Res 19:794–801CrossRefPubMed
18.
go back to reference Blain H, Chavassieux P, Portero-Muzy N et al (2008) Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 43:862–868CrossRefPubMed Blain H, Chavassieux P, Portero-Muzy N et al (2008) Cortical and trabecular bone distribution in the femoral neck in osteoporosis and osteoarthritis. Bone 43:862–868CrossRefPubMed
19.
go back to reference Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102CrossRefPubMed Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102CrossRefPubMed
20.
go back to reference Koivumäki JE, Thevenot J, Pulkkinen P et al (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50:824–829CrossRefPubMed Koivumäki JE, Thevenot J, Pulkkinen P et al (2012) Ct-based finite element models can be used to estimate experimentally measured failure loads in the proximal femur. Bone 50:824–829CrossRefPubMed
21.
go back to reference Raum K (2011) Bone quantitative ultrasound. Springer Dordrecht Heidelberg, London Raum K (2011) Bone quantitative ultrasound. Springer Dordrecht Heidelberg, London
22.
go back to reference Rho JY, Zioupos P, Currey JD, Pharr GM (2002) Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nanoindentation. J Biomech 35:189–198CrossRefPubMed Rho JY, Zioupos P, Currey JD, Pharr GM (2002) Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nanoindentation. J Biomech 35:189–198CrossRefPubMed
23.
go back to reference Melsen F, Melsen B, Mosekilde L et al (1978) Histomorphometric analysis of normal bone from the iliac crest. Acta Pathol Microbiol Scand. 86:70–81 Melsen F, Melsen B, Mosekilde L et al (1978) Histomorphometric analysis of normal bone from the iliac crest. Acta Pathol Microbiol Scand. 86:70–81
24.
25.
go back to reference Brockstedt H, Kassem M, Eriksen EF et al (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691CrossRefPubMed Brockstedt H, Kassem M, Eriksen EF et al (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691CrossRefPubMed
26.
go back to reference Cohen-Solal M, Shih M-S, Lundy M, Parfitt A (1991) A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal osteoporosis. J Bone Miner Res 6:1331–1338CrossRefPubMed Cohen-Solal M, Shih M-S, Lundy M, Parfitt A (1991) A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal osteoporosis. J Bone Miner Res 6:1331–1338CrossRefPubMed
27.
go back to reference Tsangari H, Findlay DM, Fazzalari NL (2007) Structural and remodeling indices in the cancellous bone of the proximal femur across adulthood. Bone 40:211–217CrossRefPubMed Tsangari H, Findlay DM, Fazzalari NL (2007) Structural and remodeling indices in the cancellous bone of the proximal femur across adulthood. Bone 40:211–217CrossRefPubMed
28.
go back to reference Ma YL, Zeng QQ, Chiang AY et al (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147CrossRefPubMed Ma YL, Zeng QQ, Chiang AY et al (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone 59:139–147CrossRefPubMed
29.
go back to reference Ottewell PD, Wang N, Brown HK et al (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20:2922–2932CrossRefPubMedCentralPubMed Ottewell PD, Wang N, Brown HK et al (2014) Zoledronic acid has differential antitumor activity in the pre- and postmenopausal bone microenvironment in vivo. Clin Cancer Res 20:2922–2932CrossRefPubMedCentralPubMed
30.
go back to reference Bobinac D, Marinovic M, Bazdulj E et al (2013) Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis. Osteoarthr Cartil 21:1724–1730CrossRefPubMed Bobinac D, Marinovic M, Bazdulj E et al (2013) Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis. Osteoarthr Cartil 21:1724–1730CrossRefPubMed
31.
go back to reference Malo MK, Rohrbach D, Isaksson H et al (2013) Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 53(2):451–458CrossRefPubMed Malo MK, Rohrbach D, Isaksson H et al (2013) Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur. Bone 53(2):451–458CrossRefPubMed
32.
go back to reference Tong XY, Malo M, Tamminen IS et al (2015) Development of new criteria for cortical bone histomorphometry in femoral neck: intra- and inter-observer reproducibility. J Bone Miner Metab 33(1):109–118 Tong XY, Malo M, Tamminen IS et al (2015) Development of new criteria for cortical bone histomorphometry in femoral neck: intra- and inter-observer reproducibility. J Bone Miner Metab 33(1):109–118
33.
go back to reference Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17CrossRefPubMedCentralPubMed Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17CrossRefPubMedCentralPubMed
34.
go back to reference Thomas CD, Mayhew PM, Power J et al (2009) Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res 24:1808–1818CrossRefPubMed Thomas CD, Mayhew PM, Power J et al (2009) Femoral neck trabecular bone: loss with aging and role in preventing fracture. J Bone Miner Res 24:1808–1818CrossRefPubMed
35.
go back to reference Poole KE, Mayhew PM, Rose CM et al (2010) Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res 25:482–491CrossRefPubMed Poole KE, Mayhew PM, Rose CM et al (2010) Changing structure of the femoral neck across the adult female lifespan. J Bone Miner Res 25:482–491CrossRefPubMed
36.
go back to reference Mayhew PM, Thomas CD, Clement JG et al (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135CrossRefPubMed Mayhew PM, Thomas CD, Clement JG et al (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366:129–135CrossRefPubMed
37.
go back to reference Johannesdottir F, Poole KE, Reeve J et al (2011) Distribution of Cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the Ages-Reykjavik study. Bone 48:1268–1276CrossRefPubMedCentralPubMed Johannesdottir F, Poole KE, Reeve J et al (2011) Distribution of Cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the Ages-Reykjavik study. Bone 48:1268–1276CrossRefPubMedCentralPubMed
38.
go back to reference Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E (2013) A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 54:8–20CrossRefPubMed Zebaze R, Ghasem-Zadeh A, Mbala A, Seeman E (2013) A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images. Bone 54:8–20CrossRefPubMed
39.
go back to reference Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–12CrossRefPubMed Evans FG (1976) Mechanical properties and histology of cortical bone from younger and older men. Anat Rec 185:1–12CrossRefPubMed
40.
go back to reference Zagba-Mongalma G, Goret-Nicaise M, Diana A (1988) Age changes in human bone: a microradiographic and histological study of subperiosteal and periosteal calcifications. Gerontology 34:265–276 Zagba-Mongalma G, Goret-Nicaise M, Diana A (1988) Age changes in human bone: a microradiographic and histological study of subperiosteal and periosteal calcifications. Gerontology 34:265–276
41.
go back to reference Riggs BL, Melton LJ, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954CrossRefPubMed Riggs BL, Melton LJ, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954CrossRefPubMed
42.
go back to reference Power J, Loveridge N, Lyon A et al (2003) Bone remodeling at the endocortical surface of the human femoral neck: a mechanism for regional cortical thinning in cases of hip fracture. J Bone Miner Res 18:1775–1780CrossRefPubMed Power J, Loveridge N, Lyon A et al (2003) Bone remodeling at the endocortical surface of the human femoral neck: a mechanism for regional cortical thinning in cases of hip fracture. J Bone Miner Res 18:1775–1780CrossRefPubMed
43.
go back to reference Power J, Doube M, van Bezooijen RL, Loveridge N, Reeve J (2012) Osteocyte recruitment declines as the osteon fills in: interacting effects of osteocytic sclerostin and previous hip fracture on the size of cortical canals in the femoral neck. Bone 50:1107–1114CrossRefPubMed Power J, Doube M, van Bezooijen RL, Loveridge N, Reeve J (2012) Osteocyte recruitment declines as the osteon fills in: interacting effects of osteocytic sclerostin and previous hip fracture on the size of cortical canals in the femoral neck. Bone 50:1107–1114CrossRefPubMed
44.
go back to reference Nicks KM, Amin S, Melton LJ 3rd et al (2013) Three-dimensional structural analysis of the proximal femur in an age stratified sample of women. Bone 55:179–188CrossRefPubMedCentralPubMed Nicks KM, Amin S, Melton LJ 3rd et al (2013) Three-dimensional structural analysis of the proximal femur in an age stratified sample of women. Bone 55:179–188CrossRefPubMedCentralPubMed
45.
go back to reference Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863CrossRefPubMed Szulc P, Seeman E, Duboeuf F, Sornay-Rendu E, Delmas PD (2006) Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21:1856–1863CrossRefPubMed
46.
go back to reference Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective minos study. Osteoporos Int. 18:495–503CrossRefPubMedCentralPubMed Szulc P, Delmas PD (2007) Bone loss in elderly men: increased endosteal bone loss and stable periosteal apposition. The prospective minos study. Osteoporos Int. 18:495–503CrossRefPubMedCentralPubMed
47.
go back to reference Cullinane DM, Einhorn TA (2002) Principles of bone biology. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Biomechanics of bone. Academic Press, San DiegoCrossRef Cullinane DM, Einhorn TA (2002) Principles of bone biology. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Biomechanics of bone. Academic Press, San DiegoCrossRef
48.
go back to reference Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474CrossRefPubMed Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474CrossRefPubMed
49.
go back to reference Kaptoge S, Dalzell N, Loveridge N et al (2003) Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 32:561–570CrossRefPubMed Kaptoge S, Dalzell N, Loveridge N et al (2003) Effects of gender, anthropometric variables, and aging on the evolution of hip strength in men and women aged over 65. Bone 32:561–570CrossRefPubMed
50.
51.
go back to reference Backman S (1957) The proximal end of the femur: investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures. Acta Radiol 146(Suppl):1–166 Backman S (1957) The proximal end of the femur: investigations with special reference to the etiology of femoral neck fractures; anatomical studies; roentgen projections; theoretical stress calculations; experimental production of fractures. Acta Radiol 146(Suppl):1–166
52.
go back to reference Hammer A (2010) The structure of the femoral neck: a physical dissection with emphasis on the internal trabecular system. Ann Anat. 192:168–177CrossRefPubMed Hammer A (2010) The structure of the femoral neck: a physical dissection with emphasis on the internal trabecular system. Ann Anat. 192:168–177CrossRefPubMed
53.
go back to reference Johannesdottir F, Aspelund T, Reeve J et al (2013) Similarities and differences between sexes in regional loss of cortical and trabecular bone in the mid-femoral neck: the AGES-Reykjavik longitudinal study. J Bone Miner Res 28:2165–2176CrossRefPubMedCentralPubMed Johannesdottir F, Aspelund T, Reeve J et al (2013) Similarities and differences between sexes in regional loss of cortical and trabecular bone in the mid-femoral neck: the AGES-Reykjavik longitudinal study. J Bone Miner Res 28:2165–2176CrossRefPubMedCentralPubMed
54.
go back to reference Dong XN, Guo XE (2000) Is the cement line a weak interface? Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL Dong XN, Guo XE (2000) Is the cement line a weak interface? Proceedings of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, FL
55.
go back to reference Dong XN, Guo XE (2001) Extracting intrinsic debonding strength of cement lines from osteon pushout experiments. In: Proceedings of the 47th Annual Meeting of the Orthopaedic Research Society, San Francisco Dong XN, Guo XE (2001) Extracting intrinsic debonding strength of cement lines from osteon pushout experiments. In: Proceedings of the 47th Annual Meeting of the Orthopaedic Research Society, San Francisco
56.
go back to reference Pfeiffer S, Crowder C, Harrington L, Brown M (2006) Secondary osteon and haversian canal dimensions as behavioral indicators. Am J Phys Anthropol 131:460–468CrossRefPubMed Pfeiffer S, Crowder C, Harrington L, Brown M (2006) Secondary osteon and haversian canal dimensions as behavioral indicators. Am J Phys Anthropol 131:460–468CrossRefPubMed
57.
go back to reference Busse B, Hahn M, Schinke T et al (2010) Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling. J Biomed Mater Res A. 92:1440–1451PubMed Busse B, Hahn M, Schinke T et al (2010) Reorganization of the femoral cortex due to age-, sex-, and endoprosthetic-related effects emphasized by osteonal dimensions and remodeling. J Biomed Mater Res A. 92:1440–1451PubMed
58.
go back to reference Bell KL, Loveridge N, Jordan GR et al (2000) A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone 27:297–304CrossRefPubMed Bell KL, Loveridge N, Jordan GR et al (2000) A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone 27:297–304CrossRefPubMed
59.
60.
go back to reference Jordan G, Loveridge N, Power J, Bell KL, Reeve J (1998) Clustering of cortical remodelling: a mechanism for generating focal weakness in hip fracture. American Society for Bone and Mineral Research and International Bone and Mineral Society (ASBMR-IBMS) second joint meeting Jordan G, Loveridge N, Power J, Bell KL, Reeve J (1998) Clustering of cortical remodelling: a mechanism for generating focal weakness in hip fracture. American Society for Bone and Mineral Research and International Bone and Mineral Society (ASBMR-IBMS) second joint meeting
61.
go back to reference Bell KL, Loveridge N, Power J et al (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64CrossRefPubMed Bell KL, Loveridge N, Power J et al (1999) Regional differences in cortical porosity in the fractured femoral neck. Bone 24:57–64CrossRefPubMed
62.
go back to reference Cooper DM, Thomas CD, Clement JG et al (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40:957–965CrossRefPubMed Cooper DM, Thomas CD, Clement JG et al (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40:957–965CrossRefPubMed
63.
go back to reference Schnitzler CM, Mesquita JM (2013) Cortical porosity in children is determined by age-dependent osteonal morphology. Bone 55:476–486CrossRefPubMed Schnitzler CM, Mesquita JM (2013) Cortical porosity in children is determined by age-dependent osteonal morphology. Bone 55:476–486CrossRefPubMed
64.
go back to reference Chappard C, Bensalah S, Olivier C et al (2013) 3D characterization of pores in the cortical bone of human femur in the elderly at different locations as determined by synchrotron micro-computed tomography images. Osteoporos Int 24:1023–1033CrossRefPubMed Chappard C, Bensalah S, Olivier C et al (2013) 3D characterization of pores in the cortical bone of human femur in the elderly at different locations as determined by synchrotron micro-computed tomography images. Osteoporos Int 24:1023–1033CrossRefPubMed
65.
go back to reference Martin RB, Pickett JC, Zinaich S (1980) Studies of skeletal remodeling in aging men. Clin Orthop 149:268–282PubMed Martin RB, Pickett JC, Zinaich S (1980) Studies of skeletal remodeling in aging men. Clin Orthop 149:268–282PubMed
66.
go back to reference Thomas CD, Feik SA, Clement JG (2006) Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J Anat 209:219–230CrossRefPubMedCentralPubMed Thomas CD, Feik SA, Clement JG (2006) Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J Anat 209:219–230CrossRefPubMedCentralPubMed
67.
go back to reference Rohde K, Rohrbach D, Gluer CC et al (2014) Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 61:302–313CrossRefPubMed Rohde K, Rohrbach D, Gluer CC et al (2014) Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study. IEEE Trans Ultrason Ferroelectr Freq Control 61:302–313CrossRefPubMed
68.
go back to reference Yeni YN, Norman TL (2000) Fracture toughness of human femoral neck: effect of microstructure, composition, and age. Bone 26:499–504CrossRefPubMed Yeni YN, Norman TL (2000) Fracture toughness of human femoral neck: effect of microstructure, composition, and age. Bone 26:499–504CrossRefPubMed
69.
go back to reference Bell KL, Loveridge N, Power J et al (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119CrossRefPubMed Bell KL, Loveridge N, Power J et al (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14:111–119CrossRefPubMed
Metadata
Title
Cortical Bone Histomorphometry in Male Femoral Neck: The Investigation of Age-Association and Regional Differences
Authors
Xiaoyu Tong
Inari S. Burton
Hanna Isaksson
Jukka S. Jurvelin
Heikki Kröger
Publication date
01-04-2015
Publisher
Springer US
Published in
Calcified Tissue International / Issue 4/2015
Print ISSN: 0171-967X
Electronic ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-015-9957-9

Other articles of this Issue 4/2015

Calcified Tissue International 4/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.