Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Coronavirus | Research

Water bath is more efficient than hot air oven at thermal inactivation of coronavirus

Authors: Xinxia Gu, Ting Cao, Jun Mou, Jie Liu

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

Thermal inactivation is a conventional and effective method of eliminating the infectivity of pathogens from specimens in clinical and biological laboratories, and reducing the risk of occupational exposure and environmental contamination. During the COVID-19 pandemic, specimens from patients and potentially infected individuals were heat treated and processed under BSL-2 conditions in a safe, cost-effective, and timely manner. The temperature and duration of heat treatment are optimized and standardized in the protocol according to the susceptibility of the pathogen and the impact on the integrity of the specimens, but the heating device is often undefined. Devices and medium transferring the thermal energy vary in heating rate, specific heat capacity, and conductivity, resulting in variations in efficiency and inactivation outcome that may compromise biosafety and downstream biological assays.

Methods

We evaluated the water bath and hot air oven in terms of pathogen inactivation efficiency, which are the most commonly used inactivation devices in hospitals and biological laboratories. By evaluating the temperature equilibrium and viral titer elimination under various conditions, we studied the devices and their inactivation outcomes under identical treatment protocol, and to analyzed the factors, such as energy conductivity, specific heat capacity, and heating rate, underlying the inactivation efficiencies.

Results

We compared thermal inactivation of coronavirus using different devices, and have found that the water bath was more efficient at reducing infectivity, with higher heat transfer and thermal equilibration than a forced hot air oven. In addition to the efficiency, the water bath showed relative consistency in temperature equilibration of samples of different volumes, reduced the need for prolonged heating, and eliminated the risk of pathogen spread by forced airflow.

Conclusions

Our data support the proposal to define the heating device in the thermal inactivation protocol and in the specimen management policy.
Literature
2.
go back to reference Chen SL, Zhao HR, Zhao CY, Zhang YQ, Li BJ, Bai GY, Liang L, Lu XL. Eighteen-year follow-up report of the surveillance and prevention of an HIV/AIDS outbreak amongst plasma donors in Hebei Province, China. BMC Infect Dis. 2015;15:316.PubMedPubMedCentralCrossRef Chen SL, Zhao HR, Zhao CY, Zhang YQ, Li BJ, Bai GY, Liang L, Lu XL. Eighteen-year follow-up report of the surveillance and prevention of an HIV/AIDS outbreak amongst plasma donors in Hebei Province, China. BMC Infect Dis. 2015;15:316.PubMedPubMedCentralCrossRef
3.
go back to reference Peng H, Bilal M, Iqbal H. Improved biosafety and biosecurity measures and/or strategies to tackle laboratory-acquired infections and related risks. Int J Environ Res Public Health. 2018;15(12):2697.PubMedPubMedCentralCrossRef Peng H, Bilal M, Iqbal H. Improved biosafety and biosecurity measures and/or strategies to tackle laboratory-acquired infections and related risks. Int J Environ Res Public Health. 2018;15(12):2697.PubMedPubMedCentralCrossRef
4.
go back to reference Normile D. Infectious diseases. Mounting lab accidents raise SARS fears. Science. 2004;304(5671):659–61.PubMedCrossRef Normile D. Infectious diseases. Mounting lab accidents raise SARS fears. Science. 2004;304(5671):659–61.PubMedCrossRef
5.
go back to reference Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246–51.PubMedPubMedCentralCrossRef Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246–51.PubMedPubMedCentralCrossRef
6.
go back to reference van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–7.PubMedCrossRef van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–7.PubMedCrossRef
7.
go back to reference WHO. Preparing to work with SARS-CoV-2: in supplement to WHO laboratory biosafety guidance related to coronavirus disease (COVID-19). 2021. WHO. Preparing to work with SARS-CoV-2: in supplement to WHO laboratory biosafety guidance related to coronavirus disease (COVID-19). 2021.
8.
go back to reference WHO. Laboratory biosafety guidance related to coronavirus disease (COVID-19). 2020. WHO. Laboratory biosafety guidance related to coronavirus disease (COVID-19). 2020.
9.
go back to reference Möller L, Schünadel L, Nitsche A, Schwebke I, Hanisch M, Laue M. Evaluation of virus inactivation by formaldehyde to enhance biosafety of diagnostic electron microscopy. Viruses. 2015;7(2):666–79.PubMedPubMedCentralCrossRef Möller L, Schünadel L, Nitsche A, Schwebke I, Hanisch M, Laue M. Evaluation of virus inactivation by formaldehyde to enhance biosafety of diagnostic electron microscopy. Viruses. 2015;7(2):666–79.PubMedPubMedCentralCrossRef
10.
go back to reference Gard S. Inactivation of poliovirus by formaldehyde theoretical and practical aspects. Bull Wld Hlth Org. 1957;17(6):979–89. Gard S. Inactivation of poliovirus by formaldehyde theoretical and practical aspects. Bull Wld Hlth Org. 1957;17(6):979–89.
11.
go back to reference Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, et al. Methods of inactivation of SARS-CoV-2 for downstream biological assays. J Infect Dis. 2020;222(9):1462–7.PubMedCrossRef Patterson EI, Prince T, Anderson ER, Casas-Sanchez A, Smith SL, Cansado-Utrilla C, et al. Methods of inactivation of SARS-CoV-2 for downstream biological assays. J Infect Dis. 2020;222(9):1462–7.PubMedCrossRef
12.
go back to reference Sagripanti JL, Hülseweh B, Grote G, Voss L, Böhling K, Marschall HJ. Microbial inactivation for safe and rapid diagnostics of infectious samples. Appl Environ Microbiol. 2011;77(20):7289–95.PubMedPubMedCentralCrossRef Sagripanti JL, Hülseweh B, Grote G, Voss L, Böhling K, Marschall HJ. Microbial inactivation for safe and rapid diagnostics of infectious samples. Appl Environ Microbiol. 2011;77(20):7289–95.PubMedPubMedCentralCrossRef
13.
go back to reference Ravanat JL, Douki D, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. 2001;63(1–3):88–102.PubMedCrossRef Ravanat JL, Douki D, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B. 2001;63(1–3):88–102.PubMedCrossRef
14.
go back to reference Darnell ME, Taylor DR. Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion. 2006;46(10):1770–7.PubMedPubMedCentralCrossRef Darnell ME, Taylor DR. Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion. 2006;46(10):1770–7.PubMedPubMedCentralCrossRef
15.
go back to reference Loveday EK, Hain KS, Kochetkova I, Hedges JF, Robison A, Snyder DT, et al. Effect of inactivation methods on SARS-CoV-2 virion protein and structure. Viruses. 2021;13(4):562.PubMedPubMedCentralCrossRef Loveday EK, Hain KS, Kochetkova I, Hedges JF, Robison A, Snyder DT, et al. Effect of inactivation methods on SARS-CoV-2 virion protein and structure. Viruses. 2021;13(4):562.PubMedPubMedCentralCrossRef
17.
go back to reference Hemati M, Soosanabadi M, Ghorashi T, Ghaffari H, Vahedi A, Sabbaghian E, et al. Thermal inactivation of COVID-19 specimens improves RNA quality and quantity. J Cell Physiol. 2021;236(7):4966–72.PubMedCrossRef Hemati M, Soosanabadi M, Ghorashi T, Ghaffari H, Vahedi A, Sabbaghian E, et al. Thermal inactivation of COVID-19 specimens improves RNA quality and quantity. J Cell Physiol. 2021;236(7):4966–72.PubMedCrossRef
18.
go back to reference Hu X, Zhang R, An T, Li Q, Situ B, Ou Z, et al. Impact of heat-inactivation on the detection of SARS-CoV-2 IgM and IgG antibody by ELISA. Clin Chim Acta. 2020;509:288–92.PubMedPubMedCentralCrossRef Hu X, Zhang R, An T, Li Q, Situ B, Ou Z, et al. Impact of heat-inactivation on the detection of SARS-CoV-2 IgM and IgG antibody by ELISA. Clin Chim Acta. 2020;509:288–92.PubMedPubMedCentralCrossRef
20.
go back to reference Pan Y, Long L, Zhang D, Yuan T, Cui S, Yang P, Wang Q, Ren S. Potential false-negative nucleic acid testing results for severe Acute Respiratory Syndrome Coronavirus 2 from thermal inactivation of samples with low viral loads. Clin Chem. 2020;66(6):794–801.PubMedCrossRef Pan Y, Long L, Zhang D, Yuan T, Cui S, Yang P, Wang Q, Ren S. Potential false-negative nucleic acid testing results for severe Acute Respiratory Syndrome Coronavirus 2 from thermal inactivation of samples with low viral loads. Clin Chem. 2020;66(6):794–801.PubMedCrossRef
21.
go back to reference Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel RN. Heat inactivation of different types of SARS-CoV-2 samples: what protocols for biosafety, molecular detection and serological diagnostics? Viruses. 2020;12(7):735.PubMedPubMedCentralCrossRef Pastorino B, Touret F, Gilles M, de Lamballerie X, Charrel RN. Heat inactivation of different types of SARS-CoV-2 samples: what protocols for biosafety, molecular detection and serological diagnostics? Viruses. 2020;12(7):735.PubMedPubMedCentralCrossRef
22.
go back to reference Batéjat C, Grassin Q, Manuguerra J-C, Leclercq I. Heat inactivation of the severe Acute Respiratory Syndrome Coronavirus 2. J Biosaf Biosecur. 2021;3(1):1–3.PubMedPubMedCentralCrossRef Batéjat C, Grassin Q, Manuguerra J-C, Leclercq I. Heat inactivation of the severe Acute Respiratory Syndrome Coronavirus 2. J Biosaf Biosecur. 2021;3(1):1–3.PubMedPubMedCentralCrossRef
23.
go back to reference Leclercq I, Batéjat C, Burguière AM, Manuguerra JC. Heat inactivation of the Middle East respiratory syndrome coronavirus. Influenza Other Respir Viruses. 2014;8(5):585–6.PubMedPubMedCentralCrossRef Leclercq I, Batéjat C, Burguière AM, Manuguerra JC. Heat inactivation of the Middle East respiratory syndrome coronavirus. Influenza Other Respir Viruses. 2014;8(5):585–6.PubMedPubMedCentralCrossRef
25.
go back to reference Lin J, Dai W, Li W, Xiao L, Luo T, Guo Y, et al. Potential false-positive and false-negative results for COVID-19 IgG/IgM antibody testing after heat-inactivation. Front Med (Lausanne). 2021;7:589080.PubMedCrossRef Lin J, Dai W, Li W, Xiao L, Luo T, Guo Y, et al. Potential false-positive and false-negative results for COVID-19 IgG/IgM antibody testing after heat-inactivation. Front Med (Lausanne). 2021;7:589080.PubMedCrossRef
26.
go back to reference Chen H, Wu R, Xing Y, Du Q, Xue Z, et al. Influence of different inactivation methods on severe acute respiratory syndrome coronavirus 2 RNA copy number. J Clin Microbiol. 2020;58(8):e00958–20.PubMedPubMedCentralCrossRef Chen H, Wu R, Xing Y, Du Q, Xue Z, et al. Influence of different inactivation methods on severe acute respiratory syndrome coronavirus 2 RNA copy number. J Clin Microbiol. 2020;58(8):e00958–20.PubMedPubMedCentralCrossRef
27.
go back to reference Wang S, Tang J, Cavalieri RP. Modeling fruit internal heating rates for hot air and hot water treatments. Postharvest Biol Tec. 2001;22:257–70.CrossRef Wang S, Tang J, Cavalieri RP. Modeling fruit internal heating rates for hot air and hot water treatments. Postharvest Biol Tec. 2001;22:257–70.CrossRef
28.
go back to reference CDC(US). Biosafety in microbiological and biomedical laboratories(6th Edition). 2020;484–501. CDC(US). Biosafety in microbiological and biomedical laboratories(6th Edition). 2020;484–501.
31.
go back to reference Turoňová B, Sikora M, Schürmann C, Hagen WJ, Welsch S, Blanc FE, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370(6513):203–8.PubMedPubMedCentralCrossRef Turoňová B, Sikora M, Schürmann C, Hagen WJ, Welsch S, Blanc FE, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370(6513):203–8.PubMedPubMedCentralCrossRef
32.
go back to reference Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol. 2010;76(9):2712–7.PubMedPubMedCentralCrossRef Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol. 2010;76(9):2712–7.PubMedPubMedCentralCrossRef
33.
go back to reference Tatzber F, Wonisch W, Balka G, Marosi A, Rusvai M, Resch U, et al. Coating with hypertonic saline improves virus protection of filtering facepiece manyfold-benefit of salt impregnation in times of pandemic. Int J Environ Res Public Health. 2021;18(14):7406.PubMedPubMedCentralCrossRef Tatzber F, Wonisch W, Balka G, Marosi A, Rusvai M, Resch U, et al. Coating with hypertonic saline improves virus protection of filtering facepiece manyfold-benefit of salt impregnation in times of pandemic. Int J Environ Res Public Health. 2021;18(14):7406.PubMedPubMedCentralCrossRef
34.
go back to reference Hatanaka N, Yasugi M, Sato T, Mukamoto M, Yamasaki S. Hypochlorous acid solution is a potent antiviral agent against SARS-CoV‐2. J Appl Microbiol. 2022;132(2):1496–502.PubMedCrossRef Hatanaka N, Yasugi M, Sato T, Mukamoto M, Yamasaki S. Hypochlorous acid solution is a potent antiviral agent against SARS-CoV‐2. J Appl Microbiol. 2022;132(2):1496–502.PubMedCrossRef
35.
go back to reference Cantero M, Carlero D, Chichón FJ, Martín-Benito J, De Pablo PJ. Monitoring SARS-CoV-2 surrogate TGEV individual virions structure survival under harsh physicochemical environments. Cells. 2022;11(11):1759.PubMedPubMedCentralCrossRef Cantero M, Carlero D, Chichón FJ, Martín-Benito J, De Pablo PJ. Monitoring SARS-CoV-2 surrogate TGEV individual virions structure survival under harsh physicochemical environments. Cells. 2022;11(11):1759.PubMedPubMedCentralCrossRef
36.
go back to reference Reed LJ, Muench H. A simple method of estimating 50% endpoints. Am J Hyg. 1938;27(20):493–7. Reed LJ, Muench H. A simple method of estimating 50% endpoints. Am J Hyg. 1938;27(20):493–7.
37.
go back to reference Hersberger M, Nusbaumer C, Scholer A, Knöpfli V, von Eckardstein A. Influence of practicable virus inactivation procedures on tests for frequently measured analytes in plasma. Clin Chem. 2004;50(5):944–6.PubMedCrossRef Hersberger M, Nusbaumer C, Scholer A, Knöpfli V, von Eckardstein A. Influence of practicable virus inactivation procedures on tests for frequently measured analytes in plasma. Clin Chem. 2004;50(5):944–6.PubMedCrossRef
38.
go back to reference Laude H. Thermal inactivation studies of a coronavirus, transmissible gastroenteritis virus. J Gen Virol. 1981;56(Pt 2):235–40.PubMedCrossRef Laude H. Thermal inactivation studies of a coronavirus, transmissible gastroenteritis virus. J Gen Virol. 1981;56(Pt 2):235–40.PubMedCrossRef
39.
go back to reference Esteban MD, Huertas JP, Fernández PS, Palop A. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores. Food Microbiol. 2013;34(1):158–63.PubMedCrossRef Esteban MD, Huertas JP, Fernández PS, Palop A. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores. Food Microbiol. 2013;34(1):158–63.PubMedCrossRef
40.
go back to reference Dewhirst M. Thermal dosimetry. In: Seegenscluniedt MH, Fessenden P, Vernon C, editors. Thermo-radiotherapy and thermochemotherapy. Berlin: Springer-Verlag; 1995. pp. 123–36.CrossRef Dewhirst M. Thermal dosimetry. In: Seegenscluniedt MH, Fessenden P, Vernon C, editors. Thermo-radiotherapy and thermochemotherapy. Berlin: Springer-Verlag; 1995. pp. 123–36.CrossRef
41.
go back to reference Gerner EW. Thermal dose and time-temperature factors for biological responses to heat shock. Int J Hyperthermia. 1987;3(4):319–27.PubMedCrossRef Gerner EW. Thermal dose and time-temperature factors for biological responses to heat shock. Int J Hyperthermia. 1987;3(4):319–27.PubMedCrossRef
42.
go back to reference Herman TS, Gerner EW, Magun BE, Stickney D, Sweets CC, White DM. Rate of heating as a determinant of hyperthermic cytotoxicity. Cancer Res. 1981;41(9 Pt 1):3519–23.PubMed Herman TS, Gerner EW, Magun BE, Stickney D, Sweets CC, White DM. Rate of heating as a determinant of hyperthermic cytotoxicity. Cancer Res. 1981;41(9 Pt 1):3519–23.PubMed
43.
go back to reference Dewhirst M, Gross JF, Sim D. Effects of heating rate on normal and tumor microcirculation. In: Diller K, Roemer R, editors. Heat and Mass transfer in the Microcirculation of Thermally Significant Vessels. New York: American Society of Mechanical Engineers; 1986. pp. 75–80. Dewhirst M, Gross JF, Sim D. Effects of heating rate on normal and tumor microcirculation. In: Diller K, Roemer R, editors. Heat and Mass transfer in the Microcirculation of Thermally Significant Vessels. New York: American Society of Mechanical Engineers; 1986. pp. 75–80.
44.
go back to reference Huertas JP, Aznar A, Esnoz A, Fernández PS, Iguaz A, Periago PM, Palop A. High heating rates affect greatly the inactivation rate of Escherichia coli. Front Microbiol. 2016;7:1256.PubMedPubMedCentralCrossRef Huertas JP, Aznar A, Esnoz A, Fernández PS, Iguaz A, Periago PM, Palop A. High heating rates affect greatly the inactivation rate of Escherichia coli. Front Microbiol. 2016;7:1256.PubMedPubMedCentralCrossRef
45.
go back to reference Conesa R, Andreu S, Fernández PS, Esnoz A, Palop A. Nonisothermal heat resistance determinations with the thermoresistometer Mastia. J Appl Microbiol. 2009;107(2):506–13.PubMedCrossRef Conesa R, Andreu S, Fernández PS, Esnoz A, Palop A. Nonisothermal heat resistance determinations with the thermoresistometer Mastia. J Appl Microbiol. 2009;107(2):506–13.PubMedCrossRef
46.
go back to reference Wang XW, Li JS, Jin M, Zhen B, Kong QX, Song N, et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J Virol Methods. 2005;126(1–2):171–7.PubMedPubMedCentralCrossRef Wang XW, Li JS, Jin M, Zhen B, Kong QX, Song N, et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus. J Virol Methods. 2005;126(1–2):171–7.PubMedPubMedCentralCrossRef
47.
go back to reference Ward RL, Knowlton DR, Winston PE. Mechanism of inactivation of enteric viruses in fresh water. Appl Environ Microbiol. 1986;53(3):450–9.CrossRef Ward RL, Knowlton DR, Winston PE. Mechanism of inactivation of enteric viruses in fresh water. Appl Environ Microbiol. 1986;53(3):450–9.CrossRef
48.
go back to reference Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;194(1–2):1–6.PubMedCrossRef Rabenau HF, Cinatl J, Morgenstern B, Bauer G, Preiser W, Doerr HW. Stability and inactivation of SARS coronavirus. Med Microbiol Immunol. 2005;194(1–2):1–6.PubMedCrossRef
Metadata
Title
Water bath is more efficient than hot air oven at thermal inactivation of coronavirus
Authors
Xinxia Gu
Ting Cao
Jun Mou
Jie Liu
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Coronavirus
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02038-7

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.