Skip to main content
Top
Published in: Virology Journal 1/2022

Open Access 01-12-2022 | Coronavirus | Research

Establishment and evaluation of a quadruple quantitative real-time PCR assay for simultaneous detection of human coronavirus subtypes

Authors: Mengchuan Zhao, Yi Xu, Dijun Zhang, Guixia Li, Huixia Gao, Xianping Zeng, Yanqing Tie, Yong Wu, Erhei Dai, Zhishan Feng

Published in: Virology Journal | Issue 1/2022

Login to get access

Abstract

Background

The newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and four seasonal human coronaviruses (HCoVs) (HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1) still circulate worldwide. The early clinical symptoms of SARS-CoV-2 and seasonal HCoV infections are similar, so rapid and accurate identification of the subtypes of HCoVs is crucial for early diagnosis, early treatment, prevention and control of these infections. However, current multiplex molecular diagnostic techniques for HCoV subtypes including SARS-CoV-2 are limited.

Methods

We designed primers and probes specific for the S and N genes of SARS-CoV-2, the N gene of severe acute respiratory syndrome coronavirus (SARS-CoV), and the ORF1ab gene of four seasonal HCoVs, as well as the human B2M gene product. We developed and optimized a quadruple quantitative real-time PCR assay (qq-PCR) for simultaneous detection of SARS-CoV-2, SARS-CoV and four seasonal HCoVs. This assay was further tested for specificity and sensitivity, and validated using 184 clinical samples.

Results

The limit of detection of the qq-PCR assay was in the range 2.5 × 101 to 6.5 × 101 copies/μL for each gene and no cross-reactivity with other common respiratory viruses was observed. The intra-assay and inter-assay coefficients of variation were 0.5–2%. The qq-PCR assay had a 91.9% sensitivity and 100.0% specificity for SARS-CoV-2 and a 95.7% sensitivity and 100% specificity for seasonal HCoVs, using the approved commercial kits as the reference. Compared to the commercial kits, total detection consistency was 98.4% (181/184) for SARS-CoV-2 and 98.6% (142/144) for seasonal HCoVs.

Conclusion

With the advantages of sensitivity, specificity, rapid detection, cost-effectiveness, and convenience, this qq-PCR assay has potential for clinical use for rapid discrimination between SARS-CoV-2, SARS-CoV and seasonal HCoVs.
Appendix
Available only for authorised users
Literature
8.
Metadata
Title
Establishment and evaluation of a quadruple quantitative real-time PCR assay for simultaneous detection of human coronavirus subtypes
Authors
Mengchuan Zhao
Yi Xu
Dijun Zhang
Guixia Li
Huixia Gao
Xianping Zeng
Yanqing Tie
Yong Wu
Erhei Dai
Zhishan Feng
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2022
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01793-3

Other articles of this Issue 1/2022

Virology Journal 1/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.