Skip to main content
Top
Published in: Journal of NeuroEngineering and Rehabilitation 1/2012

Open Access 01-12-2012 | Research

A multi-pad electrode based functional electrical stimulation system for restoration of grasp

Authors: Nebojša M Malešević, Lana Z Popović Maneski, Vojin Ilić, Nikola Jorgovanović, Goran Bijelić, Thierry Keller, Dejan B Popović

Published in: Journal of NeuroEngineering and Rehabilitation | Issue 1/2012

Login to get access

Abstract

Background

Functional electrical stimulation (FES) applied via transcutaneous electrodes is a common rehabilitation technique for assisting grasp in patients with central nervous system lesions. To improve the stimulation effectiveness of conventional FES, we introduce multi-pad electrodes and a new stimulation paradigm.

Methods

The new FES system comprises an electrode composed of small pads that can be activated individually. This electrode allows the targeting of motoneurons that activate synergistic muscles and produce a functional movement. The new stimulation paradigm allows asynchronous activation of motoneurons and provides controlled spatial distribution of the electrical charge that is delivered to the motoneurons. We developed an automated technique for the determination of the preferred electrode based on a cost function that considers the required movement of the fingers and the stabilization of the wrist joint. The data used within the cost function come from a sensorized garment that is easy to implement and does not require calibration. The design of the system also includes the possibility for fine-tuning and adaptation with a manually controllable interface.

Results

The device was tested on three stroke patients. The results show that the multi-pad electrodes provide the desired level of selectivity and can be used for generating a functional grasp. The results also show that the procedure, when performed on a specific user, results in the preferred electrode configuration characteristics for that patient. The findings from this study are of importance for the application of transcutaneous stimulation in the clinical and home environments.
Appendix
Available only for authorised users
Literature
1.
go back to reference Long C: An electrophysiologic splint for the hand. Arch Phys Med Rehabil 1963, 44: 499-503.PubMed Long C: An electrophysiologic splint for the hand. Arch Phys Med Rehabil 1963, 44: 499-503.PubMed
2.
go back to reference Rebersek S, Vodovnik L: Proportionally controlled functional electrical stimulation of hand. Arch Phys Med Rehabil 1973, 54: 378.PubMed Rebersek S, Vodovnik L: Proportionally controlled functional electrical stimulation of hand. Arch Phys Med Rehabil 1973, 54: 378.PubMed
3.
go back to reference Rudel D, Bajd T, Rebersek S, Vodovnik L: FES assisted manipulation in quadriplegic patients. Popovi c, D (Ed ), Advances in External Control of Human Extremities 1984, 8: 273-282. Rudel D, Bajd T, Rebersek S, Vodovnik L: FES assisted manipulation in quadriplegic patients. Popovi c, D (Ed ), Advances in External Control of Human Extremities 1984, 8: 273-282.
4.
go back to reference Merletti R, Acimovic R, Grobelnik S, Cvilak G: Electrophysiological orthosis for the upper extremity in hemiplegia: feasibility study. Arch Phys Med Rehabil 1975, 56: 507.PubMed Merletti R, Acimovic R, Grobelnik S, Cvilak G: Electrophysiological orthosis for the upper extremity in hemiplegia: feasibility study. Arch Phys Med Rehabil 1975, 56: 507.PubMed
5.
go back to reference Broderick BJ, Breen PP, Olaighin G: Electronic stimulators for surface neural prosthesis. Journal of Automatic Control 2008, 18: 25-33. 10.2298/JAC0802025BCrossRef Broderick BJ, Breen PP, Olaighin G: Electronic stimulators for surface neural prosthesis. Journal of Automatic Control 2008, 18: 25-33. 10.2298/JAC0802025BCrossRef
6.
go back to reference Hendricks HT, IJzerman MJ, De Kroon JR, Zilvold G: Functional electrical stimulation by means of the ‘Ness Handmaster Orthosis’ in chronic stroke patients: an exploratory study. Clin Rehabil 2001, 15: 217-220. 10.1191/026921501672937235CrossRefPubMed Hendricks HT, IJzerman MJ, De Kroon JR, Zilvold G: Functional electrical stimulation by means of the ‘Ness Handmaster Orthosis’ in chronic stroke patients: an exploratory study. Clin Rehabil 2001, 15: 217-220. 10.1191/026921501672937235CrossRefPubMed
7.
go back to reference Popović DB, Sinkjær T, Popović MB: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabil 2009, 25: 45-58. Popović DB, Sinkjær T, Popović MB: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabil 2009, 25: 45-58.
8.
go back to reference Yan T, Hui-Chan CWY, Li LSW: Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke. Stroke 2005, 36: 80-85. 10.1161/01.STR.0000149623.24906.63CrossRefPubMed Yan T, Hui-Chan CWY, Li LSW: Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke. Stroke 2005, 36: 80-85. 10.1161/01.STR.0000149623.24906.63CrossRefPubMed
9.
go back to reference Popović DB, Sinkjær T, Popović MB: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabil 2009, 25: 45-58. Popović DB, Sinkjær T, Popović MB: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabil 2009, 25: 45-58.
10.
go back to reference Popović DB, Popović MB: Advances in the use of electrical stimulation for the recovery of motor function. Brain Machine Interfaces: Implications for Science, Clinical Practice and Society 2011, 194: 215-225. Popović DB, Popović MB: Advances in the use of electrical stimulation for the recovery of motor function. Brain Machine Interfaces: Implications for Science, Clinical Practice and Society 2011, 194: 215-225.
11.
go back to reference Nathan RH, Ohry A: Upper limb functions regained in quadriplegia: a hybrid computerized neuromuscular stimulation system. Arch Phys Med Rehabil 1990, 71: 415.PubMed Nathan RH, Ohry A: Upper limb functions regained in quadriplegia: a hybrid computerized neuromuscular stimulation system. Arch Phys Med Rehabil 1990, 71: 415.PubMed
12.
go back to reference Nathan R: Handmaster NMS. Present technology and the next generation. In Proceedings of the 2nd Int. Edited by: Popovic D. Burnaby: Symposium IFESS; 1997:139-140. Nathan R: Handmaster NMS. Present technology and the next generation. In Proceedings of the 2nd Int. Edited by: Popovic D. Burnaby: Symposium IFESS; 1997:139-140.
13.
go back to reference Nathan RH: An FNS-based system for generating upper limb function in the C4 quadriplegic. Med Biol Eng Comput 1989, 27: 549-556. 10.1007/BF02441635CrossRef Nathan RH: An FNS-based system for generating upper limb function in the C4 quadriplegic. Med Biol Eng Comput 1989, 27: 549-556. 10.1007/BF02441635CrossRef
14.
go back to reference Fujii T, Seki K, Handa Y: Development of a new FES system with trained super-multichannel surface electrodes. Bournemouth, UK: Proc. 9th Annual Conf IFESS; 21-24. Fujii T, Seki K, Handa Y: Development of a new FES system with trained super-multichannel surface electrodes. Bournemouth, UK: Proc. 9th Annual Conf IFESS; 21-24.
15.
go back to reference Elsaify A: A self-optimising portable FES system using an electrode array and movement sensors . Leicester: University of Leicester, Department of Engineering; 2005. Elsaify A: A self-optimising portable FES system using an electrode array and movement sensors . Leicester: University of Leicester, Department of Engineering; 2005.
16.
go back to reference Keller T, Lawrence M, Kuhn A, Morari M: New multi-channel transcutaneous electrical stimulation technology for rehabilitation . New York, USA: Proc of the 28th IEEE EMBS; 2006:194-197. Keller T, Lawrence M, Kuhn A, Morari M: New multi-channel transcutaneous electrical stimulation technology for rehabilitation . New York, USA: Proc of the 28th IEEE EMBS; 2006:194-197.
17.
go back to reference Kuhn A, Keller T, Micera S, Morari M: Array electrode design for transcutaneous electrical stimulation: a simulation study. Med Eng Phys 2009, 31: 945-951. 10.1016/j.medengphy.2009.05.006CrossRefPubMed Kuhn A, Keller T, Micera S, Morari M: Array electrode design for transcutaneous electrical stimulation: a simulation study. Med Eng Phys 2009, 31: 945-951. 10.1016/j.medengphy.2009.05.006CrossRefPubMed
18.
go back to reference O'Dwyer SB, O'Keeffe DT, Coote S, Lyons GM: An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med Eng Phys 2006, 28: 166-176. 10.1016/j.medengphy.2005.03.010CrossRefPubMed O'Dwyer SB, O'Keeffe DT, Coote S, Lyons GM: An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Med Eng Phys 2006, 28: 166-176. 10.1016/j.medengphy.2005.03.010CrossRefPubMed
19.
go back to reference Popović Bijelić A, Bijelić G, Jorgovanović N, Bojanić D, Popović MB, Popović DB: Multi Field Surface Electrode for Selective Electrical Stimulation. Artif Organs 2005, 29: 448-452. 10.1111/j.1525-1594.2005.29075.xCrossRefPubMed Popović Bijelić A, Bijelić G, Jorgovanović N, Bojanić D, Popović MB, Popović DB: Multi Field Surface Electrode for Selective Electrical Stimulation. Artif Organs 2005, 29: 448-452. 10.1111/j.1525-1594.2005.29075.xCrossRefPubMed
20.
go back to reference Popovic DB, Popovic MB: Automatic determination of the optimal shape of a surface electrode: Selective stimulation. J Neurosci Methods 2009, 178: 174-181. 10.1016/j.jneumeth.2008.12.003CrossRefPubMed Popovic DB, Popovic MB: Automatic determination of the optimal shape of a surface electrode: Selective stimulation. J Neurosci Methods 2009, 178: 174-181. 10.1016/j.jneumeth.2008.12.003CrossRefPubMed
21.
go back to reference Malešević NM, Popović LZ, Schwirtlich L, Popović DB: Distributed low frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve 2010, 42: 556-562. 10.1002/mus.21736CrossRefPubMed Malešević NM, Popović LZ, Schwirtlich L, Popović DB: Distributed low frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve 2010, 42: 556-562. 10.1002/mus.21736CrossRefPubMed
22.
go back to reference Popovic LZ, Malesevic NM: Muscle fatigue of quadriceps in paraplegics: comparison between single vs. multi-pad electrode surface stimulation. Minneapolis, MN: Proc of IEEE EMBC; 2009:6785-6788. Popovic LZ, Malesevic NM: Muscle fatigue of quadriceps in paraplegics: comparison between single vs. multi-pad electrode surface stimulation. Minneapolis, MN: Proc of IEEE EMBC; 2009:6785-6788.
23.
go back to reference Nguyen R, Masani K, Micera S, Morari M, Popovic MR: Spatially Distributed Sequential Stimulation Reduces Fatigue in Paralyzed Triceps Surae Muscles: A Case Study. Artif Organs 2011, 35: 1174-1180. 10.1111/j.1525-1594.2010.01195.xCrossRefPubMed Nguyen R, Masani K, Micera S, Morari M, Popovic MR: Spatially Distributed Sequential Stimulation Reduces Fatigue in Paralyzed Triceps Surae Muscles: A Case Study. Artif Organs 2011, 35: 1174-1180. 10.1111/j.1525-1594.2010.01195.xCrossRefPubMed
24.
go back to reference Bijelić G, Popović-Bijelić A, Jorgovanović N, Bojanić D, Popović DB: E Actitrode: the new selective stimulation interface for functional movements in hemiplegics patients. Serbian Journal of Electrical Engineering 2004, 1: 21-28. 10.2298/SJEE0403021BCrossRef Bijelić G, Popović-Bijelić A, Jorgovanović N, Bojanić D, Popović DB: E Actitrode: the new selective stimulation interface for functional movements in hemiplegics patients. Serbian Journal of Electrical Engineering 2004, 1: 21-28. 10.2298/SJEE0403021BCrossRef
25.
go back to reference Popovic LZ, Malesevic NM, Popovic MB: Optimization of multi-pad surface electrode: Selective stimulation of wrist. St. Petersburg Russia: Proc of IEEE EuroCON; 2009:142-145. Popovic LZ, Malesevic NM, Popovic MB: Optimization of multi-pad surface electrode: Selective stimulation of wrist. St. Petersburg Russia: Proc of IEEE EuroCON; 2009:142-145.
26.
go back to reference Malešević N, Popović L, Bijelić G, Kvaščev G: Muscle twitch responses for shaping the multi-pad electrode for functional electrical stimulation. J Automatic Control 2010, 20: 53-57. 10.2298/JAC1001053MCrossRef Malešević N, Popović L, Bijelić G, Kvaščev G: Muscle twitch responses for shaping the multi-pad electrode for functional electrical stimulation. J Automatic Control 2010, 20: 53-57. 10.2298/JAC1001053MCrossRef
27.
go back to reference Popović Maneski L, Jorgovanović N, Ilić V, Došen S, Keller T, Popović MB, Popović DB: Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput 2011, 49: 1187-1193. 10.1007/s11517-011-0803-6CrossRefPubMed Popović Maneski L, Jorgovanović N, Ilić V, Došen S, Keller T, Popović MB, Popović DB: Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput 2011, 49: 1187-1193. 10.1007/s11517-011-0803-6CrossRefPubMed
28.
go back to reference Routh GR, Durfee WK: Doublet stimulation to reduce fatigue in electrically stimulated muscle during controlled leg lifts. Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE 2003, 2: 1531-1534. Routh GR, Durfee WK: Doublet stimulation to reduce fatigue in electrically stimulated muscle during controlled leg lifts. Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE 2003, 2: 1531-1534.
29.
go back to reference Fang ZP, Mortimer JT: A method to effect physiological recruitment order in electrically activated muscle. Biomedical Engineering, IEEE Transactions on 1991, 38: 175-179. 10.1109/10.76384CrossRef Fang ZP, Mortimer JT: A method to effect physiological recruitment order in electrically activated muscle. Biomedical Engineering, IEEE Transactions on 1991, 38: 175-179. 10.1109/10.76384CrossRef
30.
go back to reference Kebaetse MB, Lee SCK, Binder-Macleod SA: A novel stimulation pattern improves performance during repetitive dynamic contractions. Muscle Nerve 2001, 24: 744-752. 10.1002/mus.1065CrossRefPubMed Kebaetse MB, Lee SCK, Binder-Macleod SA: A novel stimulation pattern improves performance during repetitive dynamic contractions. Muscle Nerve 2001, 24: 744-752. 10.1002/mus.1065CrossRefPubMed
31.
go back to reference Scott WB, Lee SCK, Johnston TE, Binkley J, Binder-Macleod SA: Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles. Muscle Nerve 2007, 35: 471-478. 10.1002/mus.20717CrossRefPubMed Scott WB, Lee SCK, Johnston TE, Binkley J, Binder-Macleod SA: Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles. Muscle Nerve 2007, 35: 471-478. 10.1002/mus.20717CrossRefPubMed
32.
go back to reference Axelgaard J, Heard S: Medical electrode. 14-3-2000. US Patent 6,038,464. Axelgaard J, Heard S: Medical electrode. 14-3-2000. US Patent 6,038,464.
33.
go back to reference Keller T, Kuhn A: Electrodes for transcutaneous (surface) electrical stimulation. J Automatic Control 2008, 18: 35-45. 10.2298/JAC0802035KCrossRef Keller T, Kuhn A: Electrodes for transcutaneous (surface) electrical stimulation. J Automatic Control 2008, 18: 35-45. 10.2298/JAC0802035KCrossRef
34.
go back to reference Kuhn A, Keller T, Lawrence M, Morari M: The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 2010, 18: 255-262.CrossRef Kuhn A, Keller T, Lawrence M, Morari M: The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 2010, 18: 255-262.CrossRef
35.
go back to reference Popovic D, Maleševic N, Keller T: Apparatus For External Activation Of Paralyzed Body Parts By Stimulation Of Peripheral Nerves. 7-7-2011. WO Patent WO/2011/079,866. Popovic D, Maleševic N, Keller T: Apparatus For External Activation Of Paralyzed Body Parts By Stimulation Of Peripheral Nerves. 7-7-2011. WO Patent WO/2011/079,866.
36.
go back to reference Wang PT, King CE, Do AH, Nenadic Z: A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories. Med Eng & Phys 2011, 33: 546-552. 10.1016/j.medengphy.2010.12.008CrossRef Wang PT, King CE, Do AH, Nenadic Z: A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories. Med Eng & Phys 2011, 33: 546-552. 10.1016/j.medengphy.2010.12.008CrossRef
37.
go back to reference Popović Maneski L, Jevtic T, Malešvić N: Assessment Of Hand Function With Flex Sensors. Zlatibor, ME 1.3: Proceedings of ETRAN; 2012. Popović Maneski L, Jevtic T, Malešvić N: Assessment Of Hand Function With Flex Sensors. Zlatibor, ME 1.3: Proceedings of ETRAN; 2012.
38.
go back to reference Häger-Ross CK, Klein CS, Thomas CK: Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury. J Neurophysiol 2006, 96: 165-174. 10.1152/jn.01339.2005CrossRefPubMed Häger-Ross CK, Klein CS, Thomas CK: Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury. J Neurophysiol 2006, 96: 165-174. 10.1152/jn.01339.2005CrossRefPubMed
Metadata
Title
A multi-pad electrode based functional electrical stimulation system for restoration of grasp
Authors
Nebojša M Malešević
Lana Z Popović Maneski
Vojin Ilić
Nikola Jorgovanović
Goran Bijelić
Thierry Keller
Dejan B Popović
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of NeuroEngineering and Rehabilitation / Issue 1/2012
Electronic ISSN: 1743-0003
DOI
https://doi.org/10.1186/1743-0003-9-66

Other articles of this Issue 1/2012

Journal of NeuroEngineering and Rehabilitation 1/2012 Go to the issue