Skip to main content
Top
Published in: Metabolic Brain Disease 1/2015

01-02-2015 | Original Paper

Contributions of glycogen to astrocytic energetics during brain activation

Authors: Gerald A. Dienel, Nancy F. Cruz

Published in: Metabolic Brain Disease | Issue 1/2015

Login to get access

Abstract

Glycogen is the major store of glucose in brain and is mainly in astrocytes. Brain glycogen levels in unstimulated, carefully-handled rats are 10–12 μmol/g, and assuming that astrocytes account for half the brain mass, astrocytic glycogen content is twice as high. Glycogen turnover is slow under basal conditions, but it is mobilized during activation. There is no net increase in incorporation of label from glucose during activation, whereas label release from pre-labeled glycogen exceeds net glycogen consumption, which increases during stronger stimuli. Because glycogen level is restored by non-oxidative metabolism, astrocytes can influence the global ratio of oxygen to glucose utilization. Compensatory increases in utilization of blood glucose during inhibition of glycogen phosphorylase are large and approximate glycogenolysis rates during sensory stimulation. In contrast, glycogenolysis rates during hypoglycemia are low due to continued glucose delivery and oxidation of endogenous substrates; rates that preserve neuronal function in the absence of glucose are also low, probably due to metabolite oxidation. Modeling studies predict that glycogenolysis maintains a high level of glucose-6-phosphate in astrocytes to maintain feedback inhibition of hexokinase, thereby diverting glucose for use by neurons. The fate of glycogen carbon in vivo is not known, but lactate efflux from brain best accounts for the major metabolic characteristics during activation of living brain. Substantial shuttling coupled with oxidation of glycogen-derived lactate is inconsistent with available evidence. Glycogen has important roles in astrocytic energetics, including glucose sparing, control of extracellular K+ level, oxidative stress management, and memory consolidation; it is a multi-functional compound.
Literature
go back to reference Adachi K, Cruz NF, Sokoloff L, Dienel GA (1995) Labeling of metabolic pools by [6-14C]glucose during K(+)-induced stimulation of glucose utilization in rat brain. J Cereb Blood Flow Metab 15(1):97–110. doi:10.1038/jcbfm.1995.11 PubMed Adachi K, Cruz NF, Sokoloff L, Dienel GA (1995) Labeling of metabolic pools by [6-14C]glucose during K(+)-induced stimulation of glucose utilization in rat brain. J Cereb Blood Flow Metab 15(1):97–110. doi:10.​1038/​jcbfm.​1995.​11 PubMed
go back to reference Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 85(15):3267–3283. doi:10.1002/jnr.21376 PubMedCentralPubMed Ball KK, Gandhi GK, Thrash J, Cruz NF, Dienel GA (2007) Astrocytic connexin distributions and rapid, extensive dye transfer via gap junctions in the inferior colliculus: implications for [(14)C]glucose metabolite trafficking. J Neurosci Res 85(15):3267–3283. doi:10.​1002/​jnr.​21376 PubMedCentralPubMed
go back to reference Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci Off J Soc Neurosci 30(42):13983–13991. doi:10.1523/JNEUROSCI.2040-10.2010 Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci Off J Soc Neurosci 30(42):13983–13991. doi:10.​1523/​JNEUROSCI.​2040-10.​2010
go back to reference Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24(6):1687–1694. doi:10.1111/j.1460-9568.2006.05056.x PubMed Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24(6):1687–1694. doi:10.​1111/​j.​1460-9568.​2006.​05056.​x PubMed
go back to reference Bradbury MWB, Cserr HF (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston MG (ed) Experimental biology of the lymphatic circulation. Research monographs in cell and tissue physiology, vol 9. Elsevier, New York, pp 355–394 Bradbury MWB, Cserr HF (1985) Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics. In: Johnston MG (ed) Experimental biology of the lymphatic circulation. Research monographs in cell and tissue physiology, vol 9. Elsevier, New York, pp 355–394
go back to reference Bradbury MW, Westrop RJ (1983) Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol 339:519–534PubMedCentralPubMed Bradbury MW, Westrop RJ (1983) Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol 339:519–534PubMedCentralPubMed
go back to reference Brown AM, Sickmann HM, Fosgerau K, Lund TM, Schousboe A, Waagepetersen HS, Ransom BR (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 79(1–2):74–80. doi:10.1002/jnr.20335 PubMed Brown AM, Sickmann HM, Fosgerau K, Lund TM, Schousboe A, Waagepetersen HS, Ransom BR (2005) Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J Neurosci Res 79(1–2):74–80. doi:10.​1002/​jnr.​20335 PubMed
go back to reference Brunner EA, Passonneau JV, Molstad C (1971) The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain. J Neurochem 18(12):2301–2316PubMed Brunner EA, Passonneau JV, Molstad C (1971) The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain. J Neurochem 18(12):2301–2316PubMed
go back to reference Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144. doi:10.1111/j.1365-2990.2007.00926.x PubMed Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34(2):131–144. doi:10.​1111/​j.​1365-2990.​2007.​00926.​x PubMed
go back to reference Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions: I. Neurons and glia. J Electron Microsc Tech 3(4):413–437. doi:10.1002/jemt.1060030406 Cataldo AM, Broadwell RD (1986) Cytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions: I. Neurons and glia. J Electron Microsc Tech 3(4):413–437. doi:10.​1002/​jemt.​1060030406
go back to reference Cetin N, Ball K, Gokden M, Cruz NF, Dienel GA (2003) Effect of reactive cell density on net [2-14C]acetate uptake into rat brain: labeling of clusters containing GFAP+- and lectin+-immunoreactive cells. Neurochem Int 42(5):359–374PubMed Cetin N, Ball K, Gokden M, Cruz NF, Dienel GA (2003) Effect of reactive cell density on net [2-14C]acetate uptake into rat brain: labeling of clusters containing GFAP+- and lectin+-immunoreactive cells. Neurochem Int 42(5):359–374PubMed
go back to reference Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24(10):573–578PubMed Chih CP, Lipton P, Roberts EL Jr (2001) Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci 24(10):573–578PubMed
go back to reference Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43(4–5):317–322PubMed Choi IY, Gruetter R (2003) In vivo 13C NMR assessment of brain glycogen concentration and turnover in the awake rat. Neurochem Int 43(4–5):317–322PubMed
go back to reference Choi IY, Tkac I, Ugurbil K, Gruetter R (1999) Noninvasive measurements of [1-(13)C]glycogen concentrations and metabolism in rat brain in vivo. J Neurochem 73(3):1300–1308PubMed Choi IY, Tkac I, Ugurbil K, Gruetter R (1999) Noninvasive measurements of [1-(13)C]glycogen concentrations and metabolism in rat brain in vivo. J Neurochem 73(3):1300–1308PubMed
go back to reference Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21(6):653–663. doi:10.1097/00004647-200106000-00003 PubMed Choi IY, Lee SP, Kim SG, Gruetter R (2001) In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab 21(6):653–663. doi:10.​1097/​00004647-200106000-00003 PubMed
go back to reference Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, Macvicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75(6):1094–1104. doi:10.1016/j.neuron.2012.08.032 PubMedCentralPubMed Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL, Martinez J, Milner TA, Ryu JK, McLarnon JG, Tresguerres M, Levin LR, Buck J, Macvicar BA (2012) Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75(6):1094–1104. doi:10.​1016/​j.​neuron.​2012.​08.​032 PubMedCentralPubMed
go back to reference Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22(12):1476–1489. doi:10.1097/00004647-200212000-00008 PubMed Cruz NF, Dienel GA (2002) High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22(12):1476–1489. doi:10.​1097/​00004647-200212000-00008 PubMed
go back to reference Cruz NF, Ball KK, Froehner SC, Adams ME, Dienel GA (2013) Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice. J Neurochem 125(2):247–259. doi:10.1111/jnc.12166 Cruz NF, Ball KK, Froehner SC, Adams ME, Dienel GA (2013) Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice. J Neurochem 125(2):247–259. doi:10.​1111/​jnc.​12166
go back to reference Dienel GA, Cruz NF (1993) Synthesis of deoxyglucose-1-phosphate, deoxyglucose-1,6-bisphosphate, and other metabolites of 2-deoxy-D-[14C]glucose in rat brain in vivo: influence of time and tissue glucose level. J Neurochem 60(6):2217–2231PubMed Dienel GA, Cruz NF (1993) Synthesis of deoxyglucose-1-phosphate, deoxyglucose-1,6-bisphosphate, and other metabolites of 2-deoxy-D-[14C]glucose in rat brain in vivo: influence of time and tissue glucose level. J Neurochem 60(6):2217–2231PubMed
go back to reference Dienel GA, Nelson T, Cruz NF, Jay T, Crane AM, Sokoloff L (1988) Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites. J Biol Chem 263(36):19697–19708PubMed Dienel GA, Nelson T, Cruz NF, Jay T, Crane AM, Sokoloff L (1988) Over-estimation of glucose-6-phosphatase activity in brain in vivo. Apparent difference in rates of [2-3H]glucose and [U-14C]glucose utilization is due to contamination of precursor pool with 14C-labeled products and incomplete recovery of 14C-labeled metabolites. J Biol Chem 263(36):19697–19708PubMed
go back to reference Dienel GA, Cruz NF, Mori K, Sokoloff L (1990) Acid lability of metabolites of 2-deoxyglucose in rat brain: implications for estimates of kinetic parameters of deoxyglucose phosphorylation and transport between blood and brain. J Neurochem 54(4):1440–1448PubMed Dienel GA, Cruz NF, Mori K, Sokoloff L (1990) Acid lability of metabolites of 2-deoxyglucose in rat brain: implications for estimates of kinetic parameters of deoxyglucose phosphorylation and transport between blood and brain. J Neurochem 54(4):1440–1448PubMed
go back to reference Dienel GA, Cruz NF, Mori K, Holden JE, Sokoloff L (1991) Direct measurement of the lambda of the lumped constant of the deoxyglucose method in rat brain: determination of lambda and lumped constant from tissue glucose concentration or equilibrium brain/plasma distribution ratio for methylglucose. J Cereb Blood Flow Metab 11(1):25–34. doi:10.1038/jcbfm.1991.3 PubMed Dienel GA, Cruz NF, Mori K, Holden JE, Sokoloff L (1991) Direct measurement of the lambda of the lumped constant of the deoxyglucose method in rat brain: determination of lambda and lumped constant from tissue glucose concentration or equilibrium brain/plasma distribution ratio for methylglucose. J Cereb Blood Flow Metab 11(1):25–34. doi:10.​1038/​jcbfm.​1991.​3 PubMed
go back to reference Dienel GA, Cruz NF, Sokoloff L (1993) Metabolites of 2-deoxy-[14C]glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab 13(2):315–327. doi:10.1038/jcbfm.1993.40 PubMed Dienel GA, Cruz NF, Sokoloff L (1993) Metabolites of 2-deoxy-[14C]glucose in plasma and brain: influence on rate of glucose utilization determined with deoxyglucose method in rat brain. J Cereb Blood Flow Metab 13(2):315–327. doi:10.​1038/​jcbfm.​1993.​40 PubMed
go back to reference Dienel GA, Liu K, Popp D, Cruz NF (1999) Enhanced acetate and glucose utilization during graded photic stimulation. Neuronal-glial interactions in vivo. Ann N Y Acad Sci 893:279–281PubMed Dienel GA, Liu K, Popp D, Cruz NF (1999) Enhanced acetate and glucose utilization during graded photic stimulation. Neuronal-glial interactions in vivo. Ann N Y Acad Sci 893:279–281PubMed
go back to reference Dienel GA, Liu K, Cruz NF (2001a) Local uptake of (14)C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. J Neurosci Res 66(5):812–820PubMed Dienel GA, Liu K, Cruz NF (2001a) Local uptake of (14)C-labeled acetate and butyrate in rat brain in vivo during spreading cortical depression. J Neurosci Res 66(5):812–820PubMed
go back to reference Dienel GA, Popp D, Drew PD, Ball K, Krisht A, Cruz NF (2001b) Preferential labeling of glial and meningial brain tumors with [2-(14)C]acetate. J Nucl Med 42(8):1243–1250PubMed Dienel GA, Popp D, Drew PD, Ball K, Krisht A, Cruz NF (2001b) Preferential labeling of glial and meningial brain tumors with [2-(14)C]acetate. J Nucl Med 42(8):1243–1250PubMed
go back to reference Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22(12):1490–1502. doi:10.1097/00004647-200212000-00009 PubMed Dienel GA, Wang RY, Cruz NF (2002) Generalized sensory stimulation of conscious rats increases labeling of oxidative pathways of glucose metabolism when the brain glucose-oxygen uptake ratio rises. J Cereb Blood Flow Metab 22(12):1490–1502. doi:10.​1097/​00004647-200212000-00009 PubMed
go back to reference Dienel GA, Cruz NF, Ball K, Popp D, Gokden M, Baron S, Wright D, Wenger GR (2003) Behavioral training increases local astrocytic metabolic activity but does not alter outcome of mild transient ischemia. Brain Res 961(2):201–212PubMed Dienel GA, Cruz NF, Ball K, Popp D, Gokden M, Baron S, Wright D, Wenger GR (2003) Behavioral training increases local astrocytic metabolic activity but does not alter outcome of mild transient ischemia. Brain Res 961(2):201–212PubMed
go back to reference DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(12):1895–1904. doi:10.1038/jcbfm.2010.151 PubMedCentralPubMed DiNuzzo M, Mangia S, Maraviglia B, Giove F (2010) Glycogenolysis in astrocytes supports blood-borne glucose channeling not glycogen-derived lactate shuttling to neurons: evidence from mathematical modeling. J Cereb Blood Flow Metab 30(12):1895–1904. doi:10.​1038/​jcbfm.​2010.​151 PubMedCentralPubMed
go back to reference Dringen R, Gebhardt R, Hamprecht B (1993a) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623(2):208–214PubMed Dringen R, Gebhardt R, Hamprecht B (1993a) Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res 623(2):208–214PubMed
go back to reference Dringen R, Schmoll D, Cesar M, Hamprecht B (1993b) Incorporation of radioactivity from [14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in brain cells. Biol Chem Hoppe Seyler 374(5):343–347PubMed Dringen R, Schmoll D, Cesar M, Hamprecht B (1993b) Incorporation of radioactivity from [14C]lactate into the glycogen of cultured mouse astroglial cells. Evidence for gluconeogenesis in brain cells. Biol Chem Hoppe Seyler 374(5):343–347PubMed
go back to reference Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-Garcia JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556. doi:10.1038/jcbfm.2012.200 PubMedCentralPubMed Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-Garcia JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556. doi:10.​1038/​jcbfm.​2012.​200 PubMedCentralPubMed
go back to reference Folbergrova J, Ingvar M, Siesjo BK (1981) Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J Neurochem 37(5):1228–1238PubMed Folbergrova J, Ingvar M, Siesjo BK (1981) Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J Neurochem 37(5):1228–1238PubMed
go back to reference Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464PubMed Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464PubMed
go back to reference Gatfield PD, Lowry OH, Schulz DW, Passonneau JV (1966) Regional energy reserves in mouse brain and changes with ischaemia and anaesthesia. J Neurochem 13(3):185–195PubMed Gatfield PD, Lowry OH, Schulz DW, Passonneau JV (1966) Regional energy reserves in mouse brain and changes with ischaemia and anaesthesia. J Neurochem 13(3):185–195PubMed
go back to reference Ghajar JB, Plum F, Duffy TE (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38(2):397–409PubMed Ghajar JB, Plum F, Duffy TE (1982) Cerebral oxidative metabolism and blood flow during acute hypoglycemia and recovery in unanesthetized rats. J Neurochem 38(2):397–409PubMed
go back to reference Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54(3):214–222. doi:10.1002/glia.20377 PubMed Gibbs ME, Anderson DG, Hertz L (2006) Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54(3):214–222. doi:10.​1002/​glia.​20377 PubMed
go back to reference Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85(15):3326–3333. doi:10.1002/jnr.21307 PubMed Gibbs ME, Lloyd HG, Santa T, Hertz L (2007) Glycogen is a preferred glutamate precursor during learning in 1-day-old chick: biochemical and behavioral evidence. J Neurosci Res 85(15):3326–3333. doi:10.​1002/​jnr.​21307 PubMed
go back to reference Gotoh J, Itoh Y, Kuang TY, Cook M, Law MJ, Sokoloff L (2000) Negligible glucose-6-phosphatase activity in cultured astroglia. J Neurochem 74(4):1400–1408PubMed Gotoh J, Itoh Y, Kuang TY, Cook M, Law MJ, Sokoloff L (2000) Negligible glucose-6-phosphatase activity in cultured astroglia. J Neurochem 74(4):1400–1408PubMed
go back to reference Gross RA, Ferrendelli JA (1980) Mechanisms of cyclic AMP regulation in cerebral anoxia and their relationship to glycogenolysis. J Neurochem 34(5):1309–1318PubMed Gross RA, Ferrendelli JA (1980) Mechanisms of cyclic AMP regulation in cerebral anoxia and their relationship to glycogenolysis. J Neurochem 34(5):1309–1318PubMed
go back to reference Grunwald F, Schrock H, Theilen H, Biber A, Kuschinsky W (1988) Local cerebral glucose utilization of the awake rat during chronic administration of nicotine. Brain Res 456(2):350–356PubMed Grunwald F, Schrock H, Theilen H, Biber A, Kuschinsky W (1988) Local cerebral glucose utilization of the awake rat during chronic administration of nicotine. Brain Res 456(2):350–356PubMed
go back to reference Hargreaves RJ, Planas AM, Cremer JE, Cunningham VJ (1986) Studies on the relationship between cerebral glucose transport and phosphorylation using 2-deoxyglucose. J Cereb Blood Flow Metab 6(6):708–716. doi:10.1038/jcbfm.1986.127 PubMed Hargreaves RJ, Planas AM, Cremer JE, Cunningham VJ (1986) Studies on the relationship between cerebral glucose transport and phosphorylation using 2-deoxyglucose. J Cereb Blood Flow Metab 6(6):708–716. doi:10.​1038/​jcbfm.​1986.​127 PubMed
go back to reference Harik SI, Busto R, Martinez E (1982) Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. J Neurosci Off J Soc Neurosci 2(4):409–414 Harik SI, Busto R, Martinez E (1982) Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. J Neurosci Off J Soc Neurosci 2(4):409–414
go back to reference Hawkins RA, Miller AL (1978) Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of conscious rats: implications for quantitative autoradiographic determination of regional glucose utilization. Neuroscience 3(2):251–258PubMed Hawkins RA, Miller AL (1978) Loss of radioactive 2-deoxy-D-glucose-6-phosphate from brains of conscious rats: implications for quantitative autoradiographic determination of regional glucose utilization. Neuroscience 3(2):251–258PubMed
go back to reference Hawkins RA, Miller AL, Nielsen RC, Veech RL (1973) The acute action of ammonia on rat brain metabolism in vivo. Biochem J 134(4):1001–1008PubMedCentralPubMed Hawkins RA, Miller AL, Nielsen RC, Veech RL (1973) The acute action of ammonia on rat brain metabolism in vivo. Biochem J 134(4):1001–1008PubMedCentralPubMed
go back to reference Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249. doi:10.1038/sj.jcbfm.9600343 PubMed Hertz L, Peng L, Dienel GA (2007) Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27(2):219–249. doi:10.​1038/​sj.​jcbfm.​9600343 PubMed
go back to reference Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci Off J Soc Neurosci 8(6):1922–1928 Hof PR, Pascale E, Magistretti PJ (1988) K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J Neurosci Off J Soc Neurosci 8(6):1922–1928
go back to reference Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L (1991) Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 11(2):171–182. doi:10.1038/jcbfm.1991.50 PubMed Holden JE, Mori K, Dienel GA, Cruz NF, Nelson T, Sokoloff L (1991) Modeling the dependence of hexose distribution volumes in brain on plasma glucose concentration: implications for estimation of the local 2-deoxyglucose lumped constant. J Cereb Blood Flow Metab 11(2):171–182. doi:10.​1038/​jcbfm.​1991.​50 PubMed
go back to reference Horinaka N, Artz N, Jehle J, Takahashi S, Kennedy C, Sokoloff L (1997) Examination of potential mechanisms in the enhancement of cerebral blood flow by hypoglycemia and pharmacological doses of deoxyglucose. J Cereb Blood Flow Metab 17(1):54–63. doi:10.1097/00004647-199701000-00008 PubMed Horinaka N, Artz N, Jehle J, Takahashi S, Kennedy C, Sokoloff L (1997) Examination of potential mechanisms in the enhancement of cerebral blood flow by hypoglycemia and pharmacological doses of deoxyglucose. J Cereb Blood Flow Metab 17(1):54–63. doi:10.​1097/​00004647-199701000-00008 PubMed
go back to reference Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111. doi:10.1126/scitranslmed.3003748 PubMedCentralPubMed Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4(147):147ra111. doi:10.​1126/​scitranslmed.​3003748 PubMedCentralPubMed
go back to reference Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci Off J Soc Neurosci 33(46):18190–18199. doi:10.1523/jneurosci.1592-13.2013 Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci Off J Soc Neurosci 33(46):18190–18199. doi:10.​1523/​jneurosci.​1592-13.​2013
go back to reference Karnovsky ML, Reich P, Anchors JM, Burrows BL (1983) Changes in brain glycogen during slow-wave sleep in the rat. J Neurochem 41(5):1498–1501PubMed Karnovsky ML, Reich P, Anchors JM, Burrows BL (1983) Changes in brain glycogen during slow-wave sleep in the rat. J Neurochem 41(5):1498–1501PubMed
go back to reference Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22(13):5581–5587PubMed Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI, Geiger JD (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22(13):5581–5587PubMed
go back to reference Lowry OH, Passonneau JV (1964) The relationships between substrates and enzymes of glycolysis in brain. J Biol Chem 239:31–42PubMed Lowry OH, Passonneau JV (1964) The relationships between substrates and enzymes of glycolysis in brain. J Biol Chem 239:31–42PubMed
go back to reference Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30PubMed Lowry OH, Passonneau JV, Hasselberger FX, Schulz DW (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J Biol Chem 239:18–30PubMed
go back to reference Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, Wildschiodtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15(3):485–491. doi:10.1038/jcbfm.1995.60 PubMed Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S, Wildschiodtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15(3):485–491. doi:10.​1038/​jcbfm.​1995.​60 PubMed
go back to reference Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19(4):393–400. doi:10.1097/00004647-199904000-00005 PubMed Madsen PL, Cruz NF, Sokoloff L, Dienel GA (1999) Cerebral oxygen/glucose ratio is low during sensory stimulation and rises above normal during recovery: excess glucose consumption during stimulation is not accounted for by lactate efflux from or accumulation in brain tissue. J Cereb Blood Flow Metab 19(4):393–400. doi:10.​1097/​00004647-199904000-00005 PubMed
go back to reference Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci U S A 78(10):6535–6539PubMedCentralPubMed Magistretti PJ, Morrison JH, Shoemaker WJ, Sapin V, Bloom FE (1981) Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism. Proc Natl Acad Sci U S A 78(10):6535–6539PubMedCentralPubMed
go back to reference Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32(7):1233–1247PubMedCentralPubMed Masamoto K, Kanno I (2012) Anesthesia and the quantitative evaluation of neurovascular coupling. J Cereb Blood Flow Metab 32(7):1233–1247PubMedCentralPubMed
go back to reference Morgenthaler FD, van Heeswijk RB, Xin L, Laus S, Frenkel H, Lei H, Gruetter R (2008) Non-invasive quantification of brain glycogen absolute concentration. J Neurochem 107(5):1414–1423PubMedCentralPubMed Morgenthaler FD, van Heeswijk RB, Xin L, Laus S, Frenkel H, Lei H, Gruetter R (2008) Non-invasive quantification of brain glycogen absolute concentration. J Neurochem 107(5):1414–1423PubMedCentralPubMed
go back to reference Mori K, Cruz N, Dienel G, Nelson T, Sokoloff L (1989) Direct chemical measurement of the lambda of the lumped constant of the [14C]deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14C]deoxyglucose and glucose and on lambda. J Cereb Blood Flow Metab 9(3):304–314. doi:10.1038/jcbfm.1989.48 PubMed Mori K, Cruz N, Dienel G, Nelson T, Sokoloff L (1989) Direct chemical measurement of the lambda of the lumped constant of the [14C]deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14C]deoxyglucose and glucose and on lambda. J Cereb Blood Flow Metab 9(3):304–314. doi:10.​1038/​jcbfm.​1989.​48 PubMed
go back to reference Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M (2006) Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 291(5):R1383–R1389. doi:10.1152/ajpregu.00235.2006 PubMed Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M (2006) Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 291(5):R1383–R1389. doi:10.​1152/​ajpregu.​00235.​2006 PubMed
go back to reference Nelson SR, Schulz DW, Passonneau JV, Lowry OH (1968) Control of glycogen levels in brain. J Neurochem 15(11):1271–1279PubMed Nelson SR, Schulz DW, Passonneau JV, Lowry OH (1968) Control of glycogen levels in brain. J Neurochem 15(11):1271–1279PubMed
go back to reference Nelson T, Lucignani G, Atlas S, Crane AM, Dienel GA, Sokoloff L (1985) Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle. Science 229(4708):60–62PubMed Nelson T, Lucignani G, Atlas S, Crane AM, Dienel GA, Sokoloff L (1985) Reexamination of glucose-6-phosphatase activity in the brain in vivo: no evidence for a futile cycle. Science 229(4708):60–62PubMed
go back to reference Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3. doi:10.3389/fnene.2012.00003 Obel LF, Muller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A (2012) Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. Front Neuroenerg 4:3. doi:10.​3389/​fnene.​2012.​00003
go back to reference Öz G, Henry PG, Seaquist ER, Gruetter R (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43(4–5):323–329PubMed Öz G, Henry PG, Seaquist ER, Gruetter R (2003) Direct, noninvasive measurement of brain glycogen metabolism in humans. Neurochem Int 43(4–5):323–329PubMed
go back to reference Passonneau JV, Lowry OH (1993) Enzymatic analysis. A practical guide. Humana Press, Totowa Passonneau JV, Lowry OH (1993) Enzymatic analysis. A practical guide. Humana Press, Totowa
go back to reference Rahman B, Kussmaul L, Hamprecht B, Dringen R (2000) Glycogen is mobilized during the disposal of peroxides by cultured astroglial cells from rat brain. Neurosci Lett 290(3):169–172PubMed Rahman B, Kussmaul L, Hamprecht B, Dringen R (2000) Glycogen is mobilized during the disposal of peroxides by cultured astroglial cells from rat brain. Neurosci Lett 290(3):169–172PubMed
go back to reference Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63PubMed Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326(1):47–63PubMed
go back to reference Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439PubMed Rennels ML, Blaumanis OR, Grady PA (1990) Rapid solute transport throughout the brain via paravascular fluid pathways. Adv Neurol 52:431–439PubMed
go back to reference Sagar SM, Sharp FR, Swanson RA (1987) The regional distribution of glycogen in rat brain fixed by microwave irradiation. Brain Res 417(1):172–174PubMed Sagar SM, Sharp FR, Swanson RA (1987) The regional distribution of glycogen in rat brain fixed by microwave irradiation. Brain Res 417(1):172–174PubMed
go back to reference Schmidt K, Lucignani G, Mori K, Jay T, Palombo E, Nelson T, Pettigrew K, Holden JE, Sokoloff L (1989) Refinement of the kinetic model of the 2-[14C]deoxyglucose method to incorporate effects of intracellular compartmentation in brain. J Cereb Blood Flow Metab 9(3):290–303. doi:10.1038/jcbfm.1989.47 PubMed Schmidt K, Lucignani G, Mori K, Jay T, Palombo E, Nelson T, Pettigrew K, Holden JE, Sokoloff L (1989) Refinement of the kinetic model of the 2-[14C]deoxyglucose method to incorporate effects of intracellular compartmentation in brain. J Cereb Blood Flow Metab 9(3):290–303. doi:10.​1038/​jcbfm.​1989.​47 PubMed
go back to reference Schmoll D, Fuhrmann E, Gebhardt R, Hamprecht B (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxykinase isoenzyme. Eur J Biochem FEBS 227(1–2):308–315 Schmoll D, Fuhrmann E, Gebhardt R, Hamprecht B (1995) Significant amounts of glycogen are synthesized from 3-carbon compounds in astroglial primary cultures from mice with participation of the mitochondrial phosphoenolpyruvate carboxykinase isoenzyme. Eur J Biochem FEBS 227(1–2):308–315
go back to reference Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res 18(1):94–99. doi:10.1007/s12640-010-9171-5 PubMed Schousboe A, Sickmann HM, Walls AB, Bak LK, Waagepetersen HS (2010) Functional importance of the astrocytic glycogen-shunt and glycolysis for maintenance of an intact intra/extracellular glutamate gradient. Neurotox Res 18(1):94–99. doi:10.​1007/​s12640-010-9171-5 PubMed
go back to reference Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30(10):1295–1304. doi:10.1007/s11064-005-8801-4 PubMed Sickmann HM, Schousboe A, Fosgerau K, Waagepetersen HS (2005) Compartmentation of lactate originating from glycogen and glucose in cultured astrocytes. Neurochem Res 30(10):1295–1304. doi:10.​1007/​s11064-005-8801-4 PubMed
go back to reference Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2010) Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 30(8):1527–1537. doi:10.1038/jcbfm.2010.61 PubMedCentralPubMed Sickmann HM, Waagepetersen HS, Schousboe A, Benie AJ, Bouman SD (2010) Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis. J Cereb Blood Flow Metab 30(8):1527–1537. doi:10.​1038/​jcbfm.​2010.​61 PubMedCentralPubMed
go back to reference Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester Siesjö BK (1978) Brain energy metabolism. Wiley, Chichester
go back to reference Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916PubMed Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916PubMed
go back to reference Sotelo C, Palay SL (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J Cell Biol 36(1):151–179PubMedCentral Sotelo C, Palay SL (1968) The fine structure of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J Cell Biol 36(1):151–179PubMedCentral
go back to reference Stewart MA, Passonneau JV, Lowry OH (1965) Substrate changes in peripheral nerve during ischaemia and Wallerian degeneration. J Neurochem 12(8):719–727PubMed Stewart MA, Passonneau JV, Lowry OH (1965) Substrate changes in peripheral nerve during ischaemia and Wallerian degeneration. J Neurochem 12(8):719–727PubMed
go back to reference Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*, S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)pro pyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321(1):45–50. doi:10.1124/jpet.106.115550 PubMed Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K, Swanson RA (2007) Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*, S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)pro pyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321(1):45–50. doi:10.​1124/​jpet.​106.​115550 PubMed
go back to reference Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70(Suppl):S138–S144PubMed Swanson RA (1992) Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70(Suppl):S138–S144PubMed
go back to reference Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51(2):451–461PubMed Swanson RA, Morton MM, Sagar SM, Sharp FR (1992) Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography. Neuroscience 51(2):451–461PubMed
go back to reference Tabernero A, Giaume C, Medina JM (1996) Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia 16(3):187–195.PubMed Tabernero A, Giaume C, Medina JM (1996) Endothelin-1 regulates glucose utilization in cultured astrocytes by controlling intercellular communication through gap junctions. Glia 16(3):187–195.PubMed
go back to reference Tesfaye N, Seaquist ER, Öz G (2011) Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. J Neurosci Res 89(12):1905–1912. doi:10.1002/jnr.22703 PubMedCentralPubMed Tesfaye N, Seaquist ER, Öz G (2011) Noninvasive measurement of brain glycogen by nuclear magnetic resonance spectroscopy and its application to the study of brain metabolism. J Neurosci Res 89(12):1905–1912. doi:10.​1002/​jnr.​22703 PubMedCentralPubMed
go back to reference Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado-Garcia JM, Gruart A, Guinovart JJ (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3(11):667–681. doi:10.1002/emmm.201100174 PubMedCentralPubMed Valles-Ortega J, Duran J, Garcia-Rocha M, Bosch C, Saez I, Pujadas L, Serafin A, Canas X, Soriano E, Delgado-Garcia JM, Gruart A, Guinovart JJ (2011) Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol Med 3(11):667–681. doi:10.​1002/​emmm.​201100174 PubMedCentralPubMed
go back to reference van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29(6):1121–1129. doi:10.1038/jcbfm.2009.35 PubMed van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29(6):1121–1129. doi:10.​1038/​jcbfm.​2009.​35 PubMed
go back to reference van Heeswijk RB, Morgenthaler FD, Xin L, Gruetter R (2010) Quantification of brain glycogen concentration and turnover through localized 13C NMR of both the C1 and C6 resonances. NMR Biomed 23(3):270–276. doi:10.1002/nbm.1460 PubMed van Heeswijk RB, Morgenthaler FD, Xin L, Gruetter R (2010) Quantification of brain glycogen concentration and turnover through localized 13C NMR of both the C1 and C6 resonances. NMR Biomed 23(3):270–276. doi:10.​1002/​nbm.​1460 PubMed
go back to reference van Heeswijk RB, Pilloud Y, Morgenthaler FD, Gruetter R (2012) A comparison of in vivo 13C MR brain glycogen quantification at 9.4 and 14.1 T. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 67(6):1523–1527. doi:10.1002/mrm.23192 van Heeswijk RB, Pilloud Y, Morgenthaler FD, Gruetter R (2012) A comparison of in vivo 13C MR brain glycogen quantification at 9.4 and 14.1 T. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med 67(6):1523–1527. doi:10.​1002/​mrm.​23192
go back to reference Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10(11):1407–1413. doi:10.1038/nn1998 PubMed Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, Criado-Garcia O, Fernandez-Sanchez E, Medrano-Fernandez I, Dominguez J, Garcia-Rocha M, Soriano E, Rodriguez de Cordoba S, Guinovart JJ (2007) Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci 10(11):1407–1413. doi:10.​1038/​nn1998 PubMed
go back to reference Watanabe H, Passonneau JV (1973) Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J Neurochem 20(6):1543–1554PubMed Watanabe H, Passonneau JV (1973) Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J Neurochem 20(6):1543–1554PubMed
go back to reference Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057PubMed Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(Pt 12):2049–2057PubMed
go back to reference Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38(3):472–485. doi:10.1007/s11064-012-0938-3 Xu J, Song D, Xue Z, Gu L, Hertz L, Peng L (2013) Requirement of glycogenolysis for uptake of increased extracellular K+ in astrocytes: potential implications for K+ homeostasis and glycogen usage in brain. Neurochem Res 38(3):472–485. doi:10.​1007/​s11064-012-0938-3
Metadata
Title
Contributions of glycogen to astrocytic energetics during brain activation
Authors
Gerald A. Dienel
Nancy F. Cruz
Publication date
01-02-2015
Publisher
Springer US
Published in
Metabolic Brain Disease / Issue 1/2015
Print ISSN: 0885-7490
Electronic ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-014-9493-8

Other articles of this Issue 1/2015

Metabolic Brain Disease 1/2015 Go to the issue