Skip to main content
Top
Published in: Virology Journal 1/2015

Open Access 01-12-2015 | Research

Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens

Authors: Jichun Wang, Aimin Ge, Mengwei Xu, Zhisheng Wang, Yongfeng Qiao, Yiqi Gu, Chang Liu, Yamei Liu, Jibo Hou

Published in: Virology Journal | Issue 1/2015

Login to get access

Abstract

Background

Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates.

Methods

To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEVC-KCE). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens.

Results

The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 106 TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 107 TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 106 TCID50 DEV-vectored vaccine.

Conclusions

We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEVC-KCE. (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEVC-KCE affects neither the growth kinetics of the virus nor its protection against DEV. (iii) DEV-H5(UL55) can generate a strong humoral immune response in 3-week-old chickens, despite the virulence of this virus observed in 1-week-old chickens. (iv) DEV-H5(UL55) induces a weak HI titer in ducks. An increase in the HI titers induced by DEV-vectored HA(H5) will be required prior to its wide application.
Literature
1.
go back to reference Jansen J, Wemmenhove R. Duck plague in domesticated geese (Anser anser). Tijdschr Diergeneeskd. 1965;90:811–5. Jansen J, Wemmenhove R. Duck plague in domesticated geese (Anser anser). Tijdschr Diergeneeskd. 1965;90:811–5.
2.
go back to reference Kaleta E, Kuczka A, Kühnhold A, Bunzenthal C, Bönner B, et al. Outbreak of duck plague (duck herpesvirus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza A virus of the subtype Asia H5N1. Dtsch Tierarztl Wochenschr. 2001;114:3–11. Kaleta E, Kuczka A, Kühnhold A, Bunzenthal C, Bönner B, et al. Outbreak of duck plague (duck herpesvirus enteritis) in numerous species of captive ducks and geese in temporal conjunction with enforced biosecurity (in-house keeping) due to the threat of avian influenza A virus of the subtype Asia H5N1. Dtsch Tierarztl Wochenschr. 2001;114:3–11.
3.
go back to reference Jansen J, Kunst H. The reported incidence of duck plague in Europe and Asia. Tijdschr Diergeneeskd. 1964;89:765–9. Jansen J, Kunst H. The reported incidence of duck plague in Europe and Asia. Tijdschr Diergeneeskd. 1964;89:765–9.
4.
go back to reference Converse K, Kidd G. Duck plague epizootics in the United States, 1967–1995. J Wildl Dis. 2001;37:347–57.PubMedCrossRef Converse K, Kidd G. Duck plague epizootics in the United States, 1967–1995. J Wildl Dis. 2001;37:347–57.PubMedCrossRef
5.
go back to reference Li Y, Huang B, Ma X, Wu J, Li F, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391:151–61.PubMedCrossRef Li Y, Huang B, Ma X, Wu J, Li F, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391:151–61.PubMedCrossRef
6.
go back to reference Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160(1–2):316–25.PubMedCrossRef Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160(1–2):316–25.PubMedCrossRef
7.
8.
go back to reference Adler H, Messerle M, Koszinowski U. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol. 2003;13(2):111–21.PubMedCrossRef Adler H, Messerle M, Koszinowski U. Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev Med Virol. 2003;13(2):111–21.PubMedCrossRef
9.
go back to reference Wang J, Osterrieder N. Generation of an infectious clone of duck enteritis virus and generation of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Res. 2011;159(1):23–31.PubMedCrossRef Wang J, Osterrieder N. Generation of an infectious clone of duck enteritis virus and generation of a vectored DEV expressing hemagglutinin of H5N1 avian influenza virus. Virus Res. 2011;159(1):23–31.PubMedCrossRef
11.
go back to reference Seyboldt C, Granzow H, Osterrieder N. Equine herpesvirus 1 (EHV-1) glycoprotein M: effect of deletions of transmembrane domains. Virology. 2000;278:477–89.PubMedCrossRef Seyboldt C, Granzow H, Osterrieder N. Equine herpesvirus 1 (EHV-1) glycoprotein M: effect of deletions of transmembrane domains. Virology. 2000;278:477–89.PubMedCrossRef
12.
go back to reference Spatz S, Smith L, Baigent S, Petherbridge L, Nair V. Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. J Gen Virol. 2011;92(Pt 7):1500–7.PubMedCrossRef Spatz S, Smith L, Baigent S, Petherbridge L, Nair V. Genotypic characterization of two bacterial artificial chromosome clones derived from a single DNA source of the very virulent gallid herpesvirus-2 strain C12/130. J Gen Virol. 2011;92(Pt 7):1500–7.PubMedCrossRef
13.
go back to reference Silva R, Dunn J, Cheng H, Niikura M. A MEQ-deleted Marek’s disease virus cloned as a bacterial artificial chromosome is a highly efficacious vaccine. Avian Dis. 2010;54(2):862–9.PubMedCrossRef Silva R, Dunn J, Cheng H, Niikura M. A MEQ-deleted Marek’s disease virus cloned as a bacterial artificial chromosome is a highly efficacious vaccine. Avian Dis. 2010;54(2):862–9.PubMedCrossRef
14.
go back to reference Gu Z, Dong J, Wang J, Hou C, Sun H, et al. A novel inactivated gE/gI deleted pseudorabies virus (PRV) vaccine completely protects pigs from an emerged variant PRV challenge. Virus Res. 2014;14:00371–2. Gu Z, Dong J, Wang J, Hou C, Sun H, et al. A novel inactivated gE/gI deleted pseudorabies virus (PRV) vaccine completely protects pigs from an emerged variant PRV challenge. Virus Res. 2014;14:00371–2.
15.
go back to reference Cardona C, Xing Z, Sandrock C, Davis C. Avian influenza in birds and mammals. Comp Immunol Microbiol Infect Dis. 2009;32(4):255–73.PubMedCrossRef Cardona C, Xing Z, Sandrock C, Davis C. Avian influenza in birds and mammals. Comp Immunol Microbiol Infect Dis. 2009;32(4):255–73.PubMedCrossRef
19.
go back to reference Wang C, Yu H, Horby PW, Cao B, Wu P, et al. Comparison of patients hospitalized with influenza A subtypes H7N9, H5N1, and 2009 pandemic H1N1. Clin Infect Dis. 2014;58(8):1095–103.PubMedCentralPubMedCrossRef Wang C, Yu H, Horby PW, Cao B, Wu P, et al. Comparison of patients hospitalized with influenza A subtypes H7N9, H5N1, and 2009 pandemic H1N1. Clin Infect Dis. 2014;58(8):1095–103.PubMedCentralPubMedCrossRef
21.
go back to reference Shi J, Gao L, Zhu Y, Chen T, Liu Y, et al. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China. PLoS One. 2014;9(4):e95685.PubMedCentralPubMedCrossRef Shi J, Gao L, Zhu Y, Chen T, Liu Y, et al. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China. PLoS One. 2014;9(4):e95685.PubMedCentralPubMedCrossRef
22.
go back to reference Cappelle J, Zhao D, Gilbert M, Nelson MI, Newman SH, et al. Risks of avian influenza transmission in areas of intensive free-ranging duck production with wild waterfowl. Ecohealth. 2014;11(1):109–19.PubMedCentralPubMedCrossRef Cappelle J, Zhao D, Gilbert M, Nelson MI, Newman SH, et al. Risks of avian influenza transmission in areas of intensive free-ranging duck production with wild waterfowl. Ecohealth. 2014;11(1):109–19.PubMedCentralPubMedCrossRef
23.
go back to reference Kim J, Negovetich N, Forrest H, Webster R. Ducks: the “Trojan horses” of H5N1 influenza. Influenza Other Respi Viruses. 2009;3:121–8.PubMedCentralCrossRef Kim J, Negovetich N, Forrest H, Webster R. Ducks: the “Trojan horses” of H5N1 influenza. Influenza Other Respi Viruses. 2009;3:121–8.PubMedCentralCrossRef
24.
go back to reference Chen P, Liu J, Jiang Y, Zhao Y, Li Q, et al. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus. Vaccine. 2014;32(41):5271–7.PubMedCrossRef Chen P, Liu J, Jiang Y, Zhao Y, Li Q, et al. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus. Vaccine. 2014;32(41):5271–7.PubMedCrossRef
26.
go back to reference Kim SH, Chen S, Jiang X, Green KY, Samal SK. Newcastle disease virus vector producing human norovirus-like particles induces serum, cellular, and mucosal immune responses in mice. J Virol. 2014;88(17):9718–27.PubMedCentralPubMedCrossRef Kim SH, Chen S, Jiang X, Green KY, Samal SK. Newcastle disease virus vector producing human norovirus-like particles induces serum, cellular, and mucosal immune responses in mice. J Virol. 2014;88(17):9718–27.PubMedCentralPubMedCrossRef
29.
go back to reference Rahaus M, Augustinski K, Castells M, Desloges N. Application of a new bivalent Marek’s disease vaccine does not interfere with infectious bronchitis or Newcastle disease vaccinations and proves efficacious. Avian Dis. 2013;57(2 Suppl):498–502.PubMedCrossRef Rahaus M, Augustinski K, Castells M, Desloges N. Application of a new bivalent Marek’s disease vaccine does not interfere with infectious bronchitis or Newcastle disease vaccinations and proves efficacious. Avian Dis. 2013;57(2 Suppl):498–502.PubMedCrossRef
30.
go back to reference Liu J, Chen P, Jiang Y, Wu L, Zeng X, et al. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus in ducks. J Virol. 2011;85(21):10989–98.PubMedCentralPubMedCrossRef Liu J, Chen P, Jiang Y, Wu L, Zeng X, et al. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus in ducks. J Virol. 2011;85(21):10989–98.PubMedCentralPubMedCrossRef
31.
go back to reference Liu J, Chen P, Jiang Y, Deng G, Shi J, et al. Recombinant duck enteritis virus works as a single-dose vaccine in broilers providing rapid protection against H5N1 influenza infection. Antiviral Res. 2013;97(3):329–33.PubMedCrossRef Liu J, Chen P, Jiang Y, Deng G, Shi J, et al. Recombinant duck enteritis virus works as a single-dose vaccine in broilers providing rapid protection against H5N1 influenza infection. Antiviral Res. 2013;97(3):329–33.PubMedCrossRef
32.
go back to reference Tischer B, Smith G, Osterrieder N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol. 2010;634:421–30.PubMedCrossRef Tischer B, Smith G, Osterrieder N. En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol. 2010;634:421–30.PubMedCrossRef
33.
go back to reference Barcy S, Corey L. Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4+ T cells. J Immunol. 2001;166(10):6242–9.PubMedCrossRef Barcy S, Corey L. Herpes simplex inhibits the capacity of lymphoblastoid B cell lines to stimulate CD4+ T cells. J Immunol. 2001;166(10):6242–9.PubMedCrossRef
34.
go back to reference Yu Z, Teng M, Sun A, Yu L, Hu B, et al. Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek’s disease virus. Virology. 2014;448:55–64.PubMedCrossRef Yu Z, Teng M, Sun A, Yu L, Hu B, et al. Virus-encoded miR-155 ortholog is an important potential regulator but not essential for the development of lymphomas induced by very virulent Marek’s disease virus. Virology. 2014;448:55–64.PubMedCrossRef
35.
go back to reference Morgan R, Cantello J, McDermott C. Transfection of chicken embryo fibrob-lasts with Marek’s disease virus DNA. Avian Dis. 1990;34(2):345–51.PubMedCrossRef Morgan R, Cantello J, McDermott C. Transfection of chicken embryo fibrob-lasts with Marek’s disease virus DNA. Avian Dis. 1990;34(2):345–51.PubMedCrossRef
36.
go back to reference Schumacher D, Tischer B, Fuchs W, Osterrieder N. Reconstitution of Marek’s disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. J Virol. 2000;74:11088–98.PubMedCentralPubMedCrossRef Schumacher D, Tischer B, Fuchs W, Osterrieder N. Reconstitution of Marek’s disease virus serotype 1 (MDV-1) from DNA cloned as a bacterial artificial chromosome and characterization of a glycoprotein B-negative MDV-1 mutant. J Virol. 2000;74:11088–98.PubMedCentralPubMedCrossRef
37.
go back to reference Tischer B, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques. 2006;40:191–7.PubMedCrossRef Tischer B, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques. 2006;40:191–7.PubMedCrossRef
Metadata
Title
Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens
Authors
Jichun Wang
Aimin Ge
Mengwei Xu
Zhisheng Wang
Yongfeng Qiao
Yiqi Gu
Chang Liu
Yamei Liu
Jibo Hou
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2015
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-015-0354-9

Other articles of this Issue 1/2015

Virology Journal 1/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.