Skip to main content
Top
Published in: Virology Journal 1/2018

Open Access 01-12-2018 | Research

Conserved methionine 165 of matrix protein contributes to the nuclear import and is essential for influenza A virus replication

Authors: Petra Švančarová, Tatiana Betáková

Published in: Virology Journal | Issue 1/2018

Login to get access

Abstract

Background

The influenza matrix protein (M1) layer under the viral membrane plays multiple roles in virus assembly and infection. N-domain and C-domain are connected by a loop region, which consists of conserved RQMV motif.

Methods

The function of the highly conserve RQMV motif in the influenza virus life cycle was investigated by site-directed mutagenesis and by rescuing mutant viruses by reverse genetics. Co-localization of M1 with nucleoprotein (NP), clustered mitochondria homolog protein (CLUH), chromosome region maintenance 1 protein (CRM1), or plasma membrane were studied by confocal microscopy.

Results

Mutant viruses containing an alanine substitution of R163, Q164 and V166 result in the production of the virus indistinguishable from the wild type phenotype. Single M165A substitution was lethal for rescuing infection virus and had a striking effect on the distribution of M1 and NP proteins. We have observed statistically significant reduction in distribution of both M165A (p‹0,05) and NP (p‹0,001) proteins to the nucleus in the cells transfected with the reverse –genetic system with mutated M1. M165A protein was co-localized with CLUH protein in the cytoplasm and around the nucleus but transport of M165-CLUH complex through the nuclear membrane was restricted.

Conclusions

Our finding suggest that methionine 165 is essential for virus replication and RQMV motif is involved in the nuclear import of viral proteins.
Literature
1.
go back to reference Wise HM, Foeglein A, Sun J, Dalton RM, Patel S, Howard W, Anderson EC, Barclay WS, Digard P. A complicated message: identification of a novel PB1-related protein translated from influenza a virus segment 2 mRNA. J Virol. 2009;83(16):8021–31.CrossRefPubMedPubMedCentral Wise HM, Foeglein A, Sun J, Dalton RM, Patel S, Howard W, Anderson EC, Barclay WS, Digard P. A complicated message: identification of a novel PB1-related protein translated from influenza a virus segment 2 mRNA. J Virol. 2009;83(16):8021–31.CrossRefPubMedPubMedCentral
2.
go back to reference Wise HM, Barbezange C, Jagger BW, Dalton RM, Gog JR, Curran MD, Taubenberger JK, Anderson EC, Digard P. Overlapping signals for translational regulation and packaging of influenza a virus segment 2. Nucleic Acids Res. 2011;39(17):7775–90.CrossRefPubMedPubMedCentral Wise HM, Barbezange C, Jagger BW, Dalton RM, Gog JR, Curran MD, Taubenberger JK, Anderson EC, Digard P. Overlapping signals for translational regulation and packaging of influenza a virus segment 2. Nucleic Acids Res. 2011;39(17):7775–90.CrossRefPubMedPubMedCentral
3.
go back to reference Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, Gog JR, Taubenberger JK, Digard P. Identification of a novel splice variant form of the influenza a virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog. 2012;8(11):e1002998.CrossRefPubMedPubMedCentral Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, Gog JR, Taubenberger JK, Digard P. Identification of a novel splice variant form of the influenza a virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog. 2012;8(11):e1002998.CrossRefPubMedPubMedCentral
4.
go back to reference Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P. An overlapping protein-coding region in influenza a virus segment 3 modulates the host response. Science. 2012;337(6091):199–204.CrossRefPubMedPubMedCentral Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P. An overlapping protein-coding region in influenza a virus segment 3 modulates the host response. Science. 2012;337(6091):199–204.CrossRefPubMedPubMedCentral
5.
go back to reference Harris A, Forouhar F, Qiu S, Sha B, Luo M. The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology. 2001;289(1):34–44.CrossRefPubMed Harris A, Forouhar F, Qiu S, Sha B, Luo M. The crystal structure of the influenza matrix protein M1 at neutral pH: M1-M1 protein interfaces can rotate in the oligomeric structures of M1. Virology. 2001;289(1):34–44.CrossRefPubMed
6.
go back to reference Zhang K, Wang Z, Liu X, Yin C, Basit Z, Xia B, Liu W. Dissection of influenza a virus M1 protein: pH-dependent oligomerization of N-terminal domain and dimerization of C-terminal domain. PLoS One. 2012;7(5):e37786.CrossRefPubMedPubMedCentral Zhang K, Wang Z, Liu X, Yin C, Basit Z, Xia B, Liu W. Dissection of influenza a virus M1 protein: pH-dependent oligomerization of N-terminal domain and dimerization of C-terminal domain. PLoS One. 2012;7(5):e37786.CrossRefPubMedPubMedCentral
7.
go back to reference Neumann G, Hughes MT, Kawaoka Y. Influenza a virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J. 2000;19(24):6751–8.CrossRefPubMedPubMedCentral Neumann G, Hughes MT, Kawaoka Y. Influenza a virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1. EMBO J. 2000;19(24):6751–8.CrossRefPubMedPubMedCentral
8.
go back to reference Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P. 2001. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J. Virol. 2001;75(1):408–19.CrossRef Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P. 2001. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J. Virol. 2001;75(1):408–19.CrossRef
9.
go back to reference Arzt S, Baudin F, Barge A, Timmins P, Burmeister WP, Ruigrok RW. Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology. 2001;279(2):439–46.CrossRefPubMed Arzt S, Baudin F, Barge A, Timmins P, Burmeister WP, Ruigrok RW. Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology. 2001;279(2):439–46.CrossRefPubMed
10.
go back to reference Shishkov AV, Bogachevam EN, Dolgov AA, Chulichkov AL, Knyazev DG, Fedorova NV, Ksenofontov AL, Kordyukova LV, Lukashina EV, Mirsky VM, Baratova LA. The in situ structural characterization of the influenza a virus matrix M1 protein within a virion. Protein Pept Lett. 2009;16(11):1407–13.CrossRefPubMed Shishkov AV, Bogachevam EN, Dolgov AA, Chulichkov AL, Knyazev DG, Fedorova NV, Ksenofontov AL, Kordyukova LV, Lukashina EV, Mirsky VM, Baratova LA. The in situ structural characterization of the influenza a virus matrix M1 protein within a virion. Protein Pept Lett. 2009;16(11):1407–13.CrossRefPubMed
11.
go back to reference Elster C, Larsen K, Gagnon J, Ruigrok RW, Baudin F. Influenza virus M1 protein binds to RNA through its nuclear localization signal. J. Gen. Virol. 1997;78(Pt7):1589–96.CrossRefPubMed Elster C, Larsen K, Gagnon J, Ruigrok RW, Baudin F. Influenza virus M1 protein binds to RNA through its nuclear localization signal. J. Gen. Virol. 1997;78(Pt7):1589–96.CrossRefPubMed
13.
go back to reference Ye ZP, Baylor NW, Wagner RR. Transcription-inhibition and RNA-binding domains of influenza a virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J Virol. 1989;63(9):3586–94.PubMedPubMedCentral Ye ZP, Baylor NW, Wagner RR. Transcription-inhibition and RNA-binding domains of influenza a virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J Virol. 1989;63(9):3586–94.PubMedPubMedCentral
14.
go back to reference Ye Z, Liu T, Offringa DP, McInnis J, Levandowski RA. Association of influenza virus matrix protein with ribonucleoproteins. J Virol. 1999;73:7467–73.PubMedPubMedCentral Ye Z, Liu T, Offringa DP, McInnis J, Levandowski RA. Association of influenza virus matrix protein with ribonucleoproteins. J Virol. 1999;73:7467–73.PubMedPubMedCentral
15.
go back to reference Liu T, Muller J, Ye Z. Association of influenza virus matrix protein with ribonucleoproteins may control viral growth and morphology. Virology. 2002;304(1):89–96.CrossRefPubMed Liu T, Muller J, Ye Z. Association of influenza virus matrix protein with ribonucleoproteins may control viral growth and morphology. Virology. 2002;304(1):89–96.CrossRefPubMed
16.
go back to reference Kerviel A, Dash S, Moncorgé O, Panthu B, Prchal J, Décimo D, Ohlmann T, Lina B, Favard C, Decroly E, Ottmann M, Roingeard P, Muriaux D. Involvement of an arginine triplet in M1 matrix protein interaction with membranes and in M1 recruitment into virus-like particles of the influenza a(H1N1)pdm09 virus. PLoS One. 2016;11(11):e0165421.CrossRefPubMedPubMedCentral Kerviel A, Dash S, Moncorgé O, Panthu B, Prchal J, Décimo D, Ohlmann T, Lina B, Favard C, Decroly E, Ottmann M, Roingeard P, Muriaux D. Involvement of an arginine triplet in M1 matrix protein interaction with membranes and in M1 recruitment into virus-like particles of the influenza a(H1N1)pdm09 virus. PLoS One. 2016;11(11):e0165421.CrossRefPubMedPubMedCentral
17.
go back to reference Zhang K, Wang Z, Fan GZ, Wang J, Gao S, Li Y, Sun L, Yin CC, Liu WJ. Two polar residues within C-terminal domain of M1 are critical for the formation of influenza a Virions. Cell Microbiol. 2015;17(11):1583–93.CrossRefPubMedPubMedCentral Zhang K, Wang Z, Fan GZ, Wang J, Gao S, Li Y, Sun L, Yin CC, Liu WJ. Two polar residues within C-terminal domain of M1 are critical for the formation of influenza a Virions. Cell Microbiol. 2015;17(11):1583–93.CrossRefPubMedPubMedCentral
19.
go back to reference Baudin F, Petit I, Weissenhorn W, Ruigrok RW. In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology. 2001;281(1):102–8.CrossRefPubMed Baudin F, Petit I, Weissenhorn W, Ruigrok RW. In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology. 2001;281(1):102–8.CrossRefPubMed
20.
go back to reference Noton SL, Medcalf E, Fisher D, Mullin AE, Elton D, Digard P. Identification of the domains of the influenza a virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J. Gen. Virol. 2007;88(Pt8):2280–90.CrossRefPubMedPubMedCentral Noton SL, Medcalf E, Fisher D, Mullin AE, Elton D, Digard P. Identification of the domains of the influenza a virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J. Gen. Virol. 2007;88(Pt8):2280–90.CrossRefPubMedPubMedCentral
21.
go back to reference Ma K, Roy AM, Whittaker GR. Nuclear export of influenza virus ribonucleoproteins: identification of an export intermediate at the nuclear periphery. Virology. 2001;282(2):215–20.CrossRefPubMed Ma K, Roy AM, Whittaker GR. Nuclear export of influenza virus ribonucleoproteins: identification of an export intermediate at the nuclear periphery. Virology. 2001;282(2):215–20.CrossRefPubMed
22.
go back to reference Akarsu H, Burmeister WP, Petosa C, Petit I, Müller CW, Ruigrok RW, Baudin F. Crystal structure of the M1 protein-binding domain of the influenza a virus nuclear export protein (NEP/NS2). EMBO J. 2003;22(18):4646–55.CrossRefPubMedPubMedCentral Akarsu H, Burmeister WP, Petosa C, Petit I, Müller CW, Ruigrok RW, Baudin F. Crystal structure of the M1 protein-binding domain of the influenza a virus nuclear export protein (NEP/NS2). EMBO J. 2003;22(18):4646–55.CrossRefPubMedPubMedCentral
23.
go back to reference Chaimayo C, Hayashi T, Underwood A, Hodges E, Takimoto T. Selective incorporation of vRNP into influenza a virions determined by its specific interaction with M1 protein. Virology. 2017;505:23–32.CrossRefPubMedPubMedCentral Chaimayo C, Hayashi T, Underwood A, Hodges E, Takimoto T. Selective incorporation of vRNP into influenza a virions determined by its specific interaction with M1 protein. Virology. 2017;505:23–32.CrossRefPubMedPubMedCentral
24.
go back to reference Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol. 2001;75(1):408–19.CrossRefPubMedPubMedCentral Elton D, Simpson-Holley M, Archer K, Medcalf L, Hallam R, McCauley J, Digard P. Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol. 2001;75(1):408–19.CrossRefPubMedPubMedCentral
25.
go back to reference Gao S, Wang S, Cao S, Sun L, Li J, Bi Y, Gao GF, Liu W. Characteristics of nucleocytoplasmic transport of H1N1 influenza A virus nuclear export protein. J Virol. 2014;88(13):7455–63.CrossRefPubMedPubMedCentral Gao S, Wang S, Cao S, Sun L, Li J, Bi Y, Gao GF, Liu W. Characteristics of nucleocytoplasmic transport of H1N1 influenza A virus nuclear export protein. J Virol. 2014;88(13):7455–63.CrossRefPubMedPubMedCentral
26.
go back to reference Betakova T, Hay AJ. Evidence that the CM2 protein of influenza C virus can modify the pH of the exocytic pathway of transfected cells. J Gen Virol. 2007;88(Pt8):2291–6.CrossRefPubMed Betakova T, Hay AJ. Evidence that the CM2 protein of influenza C virus can modify the pH of the exocytic pathway of transfected cells. J Gen Virol. 2007;88(Pt8):2291–6.CrossRefPubMed
27.
go back to reference Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza a virus from eight plasmids. Proc. Natl. Acad. Sci. U S A. 2000;97(11):6108–13.CrossRef Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG. A DNA transfection system for generation of influenza a virus from eight plasmids. Proc. Natl. Acad. Sci. U S A. 2000;97(11):6108–13.CrossRef
28.
go back to reference Svetlikova D, Kabat P, Ohradanova A, Pastorek J, Betakova T. Influenza a virus replication is inhibited in IFN-λ2 and IFN-λ3 transfected or stimulated cells. Antivir Res. 2010;88(3):329–33.CrossRefPubMed Svetlikova D, Kabat P, Ohradanova A, Pastorek J, Betakova T. Influenza a virus replication is inhibited in IFN-λ2 and IFN-λ3 transfected or stimulated cells. Antivir Res. 2010;88(3):329–33.CrossRefPubMed
29.
go back to reference Betakova T, Ciampor F, Hay AJ. Influence of residue 44 on the activity of the M2 proton channel of influenza a virus. J. Gen. Virol. 2005;86(Pt1):181–4.CrossRefPubMed Betakova T, Ciampor F, Hay AJ. Influence of residue 44 on the activity of the M2 proton channel of influenza a virus. J. Gen. Virol. 2005;86(Pt1):181–4.CrossRefPubMed
30.
go back to reference Ando T, Yamayoshi S, Tomita Y, Watanabe S, Watanabe T, Kawaoka Y. The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nat Microbiol. 2016;1(8):16062.CrossRefPubMed Ando T, Yamayoshi S, Tomita Y, Watanabe S, Watanabe T, Kawaoka Y. The host protein CLUH participates in the subnuclear transport of influenza virus ribonucleoprotein complexes. Nat Microbiol. 2016;1(8):16062.CrossRefPubMed
31.
go back to reference Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90(6):1051–60.CrossRefPubMed Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90(6):1051–60.CrossRefPubMed
32.
go back to reference Wang D, Harmon A, Jin J, Francis DH, Christopher-Hennings J, Nelson E, Montelaro RC, Li F. The lack of an inherent membrane targeting signal is responsible for the failure of the matrix (M1) protein of influenza a virus to bud into virus-like particles. J Virol. 2010;84(9):4673–81.CrossRefPubMedPubMedCentral Wang D, Harmon A, Jin J, Francis DH, Christopher-Hennings J, Nelson E, Montelaro RC, Li F. The lack of an inherent membrane targeting signal is responsible for the failure of the matrix (M1) protein of influenza a virus to bud into virus-like particles. J Virol. 2010;84(9):4673–81.CrossRefPubMedPubMedCentral
33.
go back to reference Gomez-Puertas P, Albo C, Perez-Pastrana E, Vivo A, Portela A. Influenza virus matrix protein is the major driving force in virus budding. J Virol. 2000;74(24):11538–47.CrossRefPubMedPubMedCentral Gomez-Puertas P, Albo C, Perez-Pastrana E, Vivo A, Portela A. Influenza virus matrix protein is the major driving force in virus budding. J Virol. 2000;74(24):11538–47.CrossRefPubMedPubMedCentral
34.
go back to reference Enami M, Enami K. Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol. 1996;70(10):6653–7.PubMedPubMedCentral Enami M, Enami K. Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol. 1996;70(10):6653–7.PubMedPubMedCentral
35.
go back to reference Ali A, Avalos RT, Ponimaskin E, Nayak DP. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol. 2000;74(18):8709–19.CrossRefPubMedPubMedCentral Ali A, Avalos RT, Ponimaskin E, Nayak DP. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J Virol. 2000;74(18):8709–19.CrossRefPubMedPubMedCentral
36.
go back to reference Arzt S, Petit I, Burmeister WP, Ruigrok RW, Baudin F. Structure of a knockout mutant of influenza virus M1 protein that has altered activities in membrane binding, oligomerisation and binding to NEP (NS2). Virus Res. 2004;99(2):115–9.CrossRefPubMed Arzt S, Petit I, Burmeister WP, Ruigrok RW, Baudin F. Structure of a knockout mutant of influenza virus M1 protein that has altered activities in membrane binding, oligomerisation and binding to NEP (NS2). Virus Res. 2004;99(2):115–9.CrossRefPubMed
37.
go back to reference Valley CC, Cembran A, Perlmutter JD, Lewis AK, Labello NP, Gao J, Sachs JN. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J Biol Chem. 2012;287(42):34979–91.CrossRefPubMedPubMedCentral Valley CC, Cembran A, Perlmutter JD, Lewis AK, Labello NP, Gao J, Sachs JN. The methionine-aromatic motif plays a unique role in stabilizing protein structure. J Biol Chem. 2012;287(42):34979–91.CrossRefPubMedPubMedCentral
38.
go back to reference Nayak DP, Hui EK, Barman S. Assembly and budding of influenza virus. Virus Res. 2004;106(2):147–65.CrossRefPubMed Nayak DP, Hui EK, Barman S. Assembly and budding of influenza virus. Virus Res. 2004;106(2):147–65.CrossRefPubMed
39.
go back to reference Xie H, Lin Z, Mosier PD, Desai UR, Gao Y. The compensatory G88R change is essential in restoring the normal functions of influenza a/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal. J Virol. 2013;87(1):345–53.CrossRefPubMedPubMedCentral Xie H, Lin Z, Mosier PD, Desai UR, Gao Y. The compensatory G88R change is essential in restoring the normal functions of influenza a/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal. J Virol. 2013;87(1):345–53.CrossRefPubMedPubMedCentral
40.
go back to reference Wu WW, Sun YH. Panté N Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein. Virol J. 2007;4:49.CrossRefPubMedPubMedCentral Wu WW, Sun YH. Panté N Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein. Virol J. 2007;4:49.CrossRefPubMedPubMedCentral
41.
go back to reference Yu M, Liu X, Cao S, Zhao Z, Zhang K, Xie Q, Chen C, Gao S, Bi Y, Sun L, Ye X, Gao GF, Liu W. Identification and characterization of three novel nuclear export signals in the influenza a virus nucleoprotein. J Virol. 2012;86(9):4970–80.CrossRefPubMedPubMedCentral Yu M, Liu X, Cao S, Zhao Z, Zhang K, Xie Q, Chen C, Gao S, Bi Y, Sun L, Ye X, Gao GF, Liu W. Identification and characterization of three novel nuclear export signals in the influenza a virus nucleoprotein. J Virol. 2012;86(9):4970–80.CrossRefPubMedPubMedCentral
42.
go back to reference Ye Q, Krug RM, Tao YJ. The mechanism by which influenza a virus nucleoprotein forms oligomers and binds RNA. Nature. 2006; 444 (7122):1078–82.CrossRefPubMed Ye Q, Krug RM, Tao YJ. The mechanism by which influenza a virus nucleoprotein forms oligomers and binds RNA. Nature. 2006; 444 (7122):1078–82.CrossRefPubMed
44.
go back to reference Gabriel G, Herwig A, Klenk HD. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza a virus. PLoS Pathog. 2008;4(2):e11.CrossRefPubMedPubMedCentral Gabriel G, Herwig A, Klenk HD. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza a virus. PLoS Pathog. 2008;4(2):e11.CrossRefPubMedPubMedCentral
45.
go back to reference Li J, Zheng W, Hou L, Chen C, Fan W, Qu H, Jiang J, Liu J, Gao GF, Zhou J, Sun L, Liu W. Differential nucleocytoplasmic shuttling of the nucleoprotein of influenza a viruses and association with host tropism. Cell Microbiol. 2017;19(5):e12692.CrossRef Li J, Zheng W, Hou L, Chen C, Fan W, Qu H, Jiang J, Liu J, Gao GF, Zhou J, Sun L, Liu W. Differential nucleocytoplasmic shuttling of the nucleoprotein of influenza a viruses and association with host tropism. Cell Microbiol. 2017;19(5):e12692.CrossRef
46.
go back to reference Ninpan K, Suptawiwat O, Boonarkart C, Songprakhon P, Puthavathana P, Auewarakul P. Mutations in matrix protein 1 and nucleoprotein caused human-specific defects in nuclear exportation and viral assembly of an avian influenza H7N1 virus. Virus Res. 2017;238:49–62.CrossRefPubMed Ninpan K, Suptawiwat O, Boonarkart C, Songprakhon P, Puthavathana P, Auewarakul P. Mutations in matrix protein 1 and nucleoprotein caused human-specific defects in nuclear exportation and viral assembly of an avian influenza H7N1 virus. Virus Res. 2017;238:49–62.CrossRefPubMed
Metadata
Title
Conserved methionine 165 of matrix protein contributes to the nuclear import and is essential for influenza A virus replication
Authors
Petra Švančarová
Tatiana Betáková
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2018
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-018-1056-x

Other articles of this Issue 1/2018

Virology Journal 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.