Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Computed Tomography | Research article

Intraoperative navigation system with a multi-modality fusion of 3D virtual model and laparoscopic real-time images in laparoscopic pancreatic surgery: a preclinical study

Authors: Chengxu Du, Jiaxuan Li, Bin Zhang, Wenfeng Feng, Tengfei Zhang, Dongrui Li

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

Laparoscopy is widely used in pancreatic surgeries nowadays. The efficient and correct judgment of the location of the anatomical structures is crucial for a safe laparoscopic pancreatic surgery. The technologies of 3-dimensional(3D) virtual model and image fusion are widely used for preoperative planning and intraoperative navigation in the medical field, but not in laparoscopic pancreatic surgery up to now. We aimed to develop an intraoperative navigation system with an accurate multi-modality fusion of 3D virtual model and laparoscopic real-time images for laparoscopic pancreatic surgery.

Methods

The software for the navigation system was developed ad hoc. The preclinical study included tests with the laparoscopic simulator and pilot cases. The 3D virtual models were built using preoperative Computed Tomography (CT) Digital Imaging and Communications in Medicine (DICOM) data. Manual and automatic real-time image fusions were tested. The practicality of the navigation system was evaluated by the operators using the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) method.

Results

The 3D virtual models were successfully built using the navigation system. The 3D model was correctly fused with the real-time laparoscopic images both manually and automatically optical orientation in the preclinical tests. The statistical comparative tests showed no statistically significant differences between the scores of the rigid model and those of the phantom model(P > 0.05). There was statistically significant difference between the total scores of automatic fusion function and those of manual fusion function (P = 0.026). In pilot cases, the 3D model was correctly fused with the real-time laparoscopic images manually. The Intraoperative navigation system was easy to use. The automatic fusion function brought more convenience to the user.

Conclusions

The intraoperative navigation system applied in laparoscopic pancreatic surgery clearly and correctly showed the covered anatomical structures. It has the potentiality of helping achieve a more safe and efficient laparoscopic pancreatic surgery.
Literature
1.
go back to reference Alsfasser G, Hermeneit S, Rau BM, Klar E. Minimally invasive surgery for pancreatic disease—current status. Dig Surg. 2016;33(4):276–83.CrossRef Alsfasser G, Hermeneit S, Rau BM, Klar E. Minimally invasive surgery for pancreatic disease—current status. Dig Surg. 2016;33(4):276–83.CrossRef
2.
go back to reference Bausch D, Keck T. [Minimally invasive pancreatic tumor surgery: oncological safety and surgical feasibility]. Chirurg. 2014;85(8):683–8.CrossRef Bausch D, Keck T. [Minimally invasive pancreatic tumor surgery: oncological safety and surgical feasibility]. Chirurg. 2014;85(8):683–8.CrossRef
3.
go back to reference Nappo G, Perinel J, El Bechwaty M, Adham M. Minimally invasive pancreatic resection: is it really the future. Dig Surg. 2016;33(4):284–9.CrossRef Nappo G, Perinel J, El Bechwaty M, Adham M. Minimally invasive pancreatic resection: is it really the future. Dig Surg. 2016;33(4):284–9.CrossRef
4.
go back to reference Zhou X, Wang S, Chen H, et al. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning. Comput Med Imaging Graph. 2012;36(4):304–13.CrossRef Zhou X, Wang S, Chen H, et al. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning. Comput Med Imaging Graph. 2012;36(4):304–13.CrossRef
5.
go back to reference Zhu S, Dong D, Birk UJ, et al. Automated motion correction for in vivo optical projection tomography. IEEE Trans Med Imaging. 2012;31(7):1358–71.CrossRef Zhu S, Dong D, Birk UJ, et al. Automated motion correction for in vivo optical projection tomography. IEEE Trans Med Imaging. 2012;31(7):1358–71.CrossRef
6.
go back to reference Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery. 2001;48(4):787–97.PubMed Nabavi A, Black PM, Gering DT, et al. Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery. 2001;48(4):787–97.PubMed
7.
go back to reference Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A. A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol. 2004;230(1):1–20.CrossRef Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A. A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol. 2004;230(1):1–20.CrossRef
8.
go back to reference Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.CrossRef Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging. 2001;20(12):1384–97.CrossRef
9.
go back to reference Mohs AM, Mancini MC, Singhal S, et al. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem. 2010;82(21):9058–65.CrossRef Mohs AM, Mancini MC, Singhal S, et al. Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem. 2010;82(21):9058–65.CrossRef
10.
go back to reference Tarwala R, Dorr LD. Robotic assisted total hip arthroplasty using the MAKO platform. Curr Rev Musculoskelet Med. 2011;4(3):151–6.CrossRef Tarwala R, Dorr LD. Robotic assisted total hip arthroplasty using the MAKO platform. Curr Rev Musculoskelet Med. 2011;4(3):151–6.CrossRef
11.
go back to reference Qin J, Xu Z, Dai J, et al. New technique: practical procedure of robotic arm-assisted (MAKO) total hip arthroplasty. Ann Transl Med. 2018;6(18):364.CrossRef Qin J, Xu Z, Dai J, et al. New technique: practical procedure of robotic arm-assisted (MAKO) total hip arthroplasty. Ann Transl Med. 2018;6(18):364.CrossRef
12.
go back to reference Oertel MF, Hobart J, Stein M, Schreiber V, Scharbrodt W. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine. 2011;14(4):532–6.CrossRef Oertel MF, Hobart J, Stein M, Schreiber V, Scharbrodt W. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J Neurosurg Spine. 2011;14(4):532–6.CrossRef
13.
go back to reference Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860–8.CrossRef Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860–8.CrossRef
14.
go back to reference Peterhans M, vom Berg A, Dagon B, et al. A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot. 2011;7(1):7–16.CrossRef Peterhans M, vom Berg A, Dagon B, et al. A navigation system for open liver surgery: design, workflow and first clinical applications. Int J Med Robot. 2011;7(1):7–16.CrossRef
15.
go back to reference Banz VM, Müller PC, Tinguely P, et al. Intraoperative image-guided navigation system: development and applicability in 65 patients undergoing liver surgery. Langenbecks Arch Surg. 2016;401(4):495–502.CrossRef Banz VM, Müller PC, Tinguely P, et al. Intraoperative image-guided navigation system: development and applicability in 65 patients undergoing liver surgery. Langenbecks Arch Surg. 2016;401(4):495–502.CrossRef
16.
go back to reference Conrad C, Fusaglia M, Peterhans M, Lu H, Weber S, Gayet B. Augmented Reality Navigation Surgery Facilitates Laparoscopic Rescue of Failed Portal Vein Embolization. J Am Coll Surg. 2016;223(4):e31-4.CrossRef Conrad C, Fusaglia M, Peterhans M, Lu H, Weber S, Gayet B. Augmented Reality Navigation Surgery Facilitates Laparoscopic Rescue of Failed Portal Vein Embolization. J Am Coll Surg. 2016;223(4):e31-4.CrossRef
17.
go back to reference Fusaglia M, Hess H, Schwalbe M, et al. A clinically applicable laser-based image-guided system for laparoscopic liver procedures. Int J Comput Assist Radiol Surg. 2016;11(8):1499–513.CrossRef Fusaglia M, Hess H, Schwalbe M, et al. A clinically applicable laser-based image-guided system for laparoscopic liver procedures. Int J Comput Assist Radiol Surg. 2016;11(8):1499–513.CrossRef
18.
go back to reference Huber T, Baumgart J, Peterhans M, Weber S, Heinrich S, Lang H. [Computer-assisted 3D-navigated laparoscopic resection of a vanished colorectal liver metastasis after chemotherapy]. Z Gastroenterol. 2016;54(1):40–3.CrossRef Huber T, Baumgart J, Peterhans M, Weber S, Heinrich S, Lang H. [Computer-assisted 3D-navigated laparoscopic resection of a vanished colorectal liver metastasis after chemotherapy]. Z Gastroenterol. 2016;54(1):40–3.CrossRef
19.
go back to reference Dubrovin V, Egoshin A, Rozhentsov A, et al. Virtual simulation, preoperative planning and intraoperative navigation during laparoscopic partial nephrectomy. Cent Eur J Urol. 2019;72(3):247–51. Dubrovin V, Egoshin A, Rozhentsov A, et al. Virtual simulation, preoperative planning and intraoperative navigation during laparoscopic partial nephrectomy. Cent Eur J Urol. 2019;72(3):247–51.
20.
go back to reference Lowndes BR, Forsyth KL, Blocker RC, et al. NASA-TLX Assessment of surgeon workload variation across specialties. Ann Surg. 2020;271(4):686–92.CrossRef Lowndes BR, Forsyth KL, Blocker RC, et al. NASA-TLX Assessment of surgeon workload variation across specialties. Ann Surg. 2020;271(4):686–92.CrossRef
21.
go back to reference Mori T, Abe N, Sugiyama M, Atomi Y. Laparoscopic pancreatic surgery. J Hepatobiliary Pancreat Surg. 2005;12(6):451–5.CrossRef Mori T, Abe N, Sugiyama M, Atomi Y. Laparoscopic pancreatic surgery. J Hepatobiliary Pancreat Surg. 2005;12(6):451–5.CrossRef
22.
go back to reference Wang M, Peng B, Liu J, et al. Practice patterns and perioperative outcomes of laparoscopic pancreaticoduodenectomy in china: a retrospective multicenter analysis of 1029 patients. Ann Surg. 2021;273(1):145–53.CrossRef Wang M, Peng B, Liu J, et al. Practice patterns and perioperative outcomes of laparoscopic pancreaticoduodenectomy in china: a retrospective multicenter analysis of 1029 patients. Ann Surg. 2021;273(1):145–53.CrossRef
23.
go back to reference Dokmak S, Ftériche FS, Aussilhou B, et al. The largest european single-center experience: 300 laparoscopic pancreatic resections. J Am Coll Surg. 2017;225(2):226–34.e2.CrossRef Dokmak S, Ftériche FS, Aussilhou B, et al. The largest european single-center experience: 300 laparoscopic pancreatic resections. J Am Coll Surg. 2017;225(2):226–34.e2.CrossRef
24.
go back to reference Kim S, Yoon YS, Han HS, Cho JY, Choi Y, Lee B. Evaluation of a single surgeon’s learning curve of laparoscopic pancreaticoduodenectomy: risk-adjusted cumulative summation analysis. Surg Endosc. 2021;35(6):2870–8.CrossRef Kim S, Yoon YS, Han HS, Cho JY, Choi Y, Lee B. Evaluation of a single surgeon’s learning curve of laparoscopic pancreaticoduodenectomy: risk-adjusted cumulative summation analysis. Surg Endosc. 2021;35(6):2870–8.CrossRef
25.
go back to reference Braga M, Ridolfi C, Balzano G, Castoldi R, Pecorelli N, Di Carlo V. Learning curve for laparoscopic distal pancreatectomy in a high-volume hospital. Updates Surg. 2012;64(3):179–83.CrossRef Braga M, Ridolfi C, Balzano G, Castoldi R, Pecorelli N, Di Carlo V. Learning curve for laparoscopic distal pancreatectomy in a high-volume hospital. Updates Surg. 2012;64(3):179–83.CrossRef
26.
go back to reference Qin R, Kendrick ML, Wolfgang CL, et al. International expert consensus on laparoscopic pancreaticoduodenectomy. Hepatobiliary Surg Nutr. 2020;9(4):464–83.CrossRef Qin R, Kendrick ML, Wolfgang CL, et al. International expert consensus on laparoscopic pancreaticoduodenectomy. Hepatobiliary Surg Nutr. 2020;9(4):464–83.CrossRef
Metadata
Title
Intraoperative navigation system with a multi-modality fusion of 3D virtual model and laparoscopic real-time images in laparoscopic pancreatic surgery: a preclinical study
Authors
Chengxu Du
Jiaxuan Li
Bin Zhang
Wenfeng Feng
Tengfei Zhang
Dongrui Li
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01585-0

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue