Skip to main content
Top
Published in: Insights into Imaging 1/2023

Open Access 01-12-2023 | Computed Tomography | Original Article

Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability

Authors: Jingyu Zhong, Zilai Pan, Yong Chen, Lingyun Wang, Yihan Xia, Lan Wang, Jianying Li, Wei Lu, Xiaomeng Shi, Jianxing Feng, Fuhua Yan, Huan Zhang, Weiwu Yao

Published in: Insights into Imaging | Issue 1/2023

Login to get access

Abstract

Objectives

To evaluate robustness of dual-energy CT (DECT) radiomics features of virtual unenhanced (VUE) image and virtual monoenergetic image (VMI) among different imaging platforms.

Methods

A phantom with sixteen clinical-relevant densities was scanned on ten DECT platforms with comparable scan parameters. Ninety-four radiomic features were extracted via Pyradiomics from VUE images and VMIs at energy level of 70 keV (VMI70keV). Test–retest repeatability was assessed by Bland–Altman analysis. Inter-platform reproducibility of VUE images and VMI70keV was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD) among platforms, and by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC) between platform pairs. The correlation between variability of CT number radiomics reproducibility was estimated.

Results

92.02% and 92.87% of features were repeatable between scan–rescans for VUE images and VMI70keV, respectively. Among platforms, 11.30% and 28.39% features of VUE images, and 15.16% and 28.99% features of VMI70keV were with CV < 10% and QCD < 10%. The average percentages of radiomics features with ICC > 0.90 and CCC > 0.90 between platform pairs were 10.00% and 9.86% in VUE images and 11.23% and 11.23% in VMI70keV. The CT number inter-platform reproducibility using CV and QCD showed negative correlations with percentage of the first-order radiomics features with CV < 10% and QCD < 10%, in both VUE images and VMI70keV (r2 0.3870–0.6178, all p < 0.001).

Conclusions

The majority of DECT radiomics features were non-reproducible. The differences in CT number were considered as an indicator of inter-platform DECT radiomics variation.
Critical relevance statement: The majority of radiomics features extracted from the VUE images and the VMI70keV were non-reproducible among platforms, while synchronizing energy levels of VMI to reduce the CT number value variability may be a potential way to mitigate radiomics instability.

Graphical Abstract

Appendix
Available only for authorised users
Literature
1.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446PubMedPubMedCentralCrossRef Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446PubMedPubMedCentralCrossRef
2.
go back to reference Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577PubMedCrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577PubMedCrossRef
3.
go back to reference O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186PubMedCrossRef O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186PubMedCrossRef
4.
go back to reference Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762PubMedCrossRef Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749–762PubMedCrossRef
5.
go back to reference van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 11(1):91PubMedPubMedCentralCrossRef van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B (2020) Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 11(1):91PubMedPubMedCentralCrossRef
6.
go back to reference Park JE, Park SY, Kim HJ, Kim HS (2019) Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 20(7):1124–1137PubMedPubMedCentralCrossRef Park JE, Park SY, Kim HJ, Kim HS (2019) Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol 20(7):1124–1137PubMedPubMedCentralCrossRef
7.
go back to reference Zwanenburg A (2019) Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 46(13):2638–2655PubMedCrossRef Zwanenburg A (2019) Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. Eur J Nucl Med Mol Imaging 46(13):2638–2655PubMedCrossRef
8.
go back to reference Cattell R, Chen S, Huang C (2019) Robustness of radiomic features in magnetic resonance imaging: review and a phantom study. Vis Comput Ind Biomed Art 2(1):19PubMedPubMedCentralCrossRef Cattell R, Chen S, Huang C (2019) Robustness of radiomic features in magnetic resonance imaging: review and a phantom study. Vis Comput Ind Biomed Art 2(1):19PubMedPubMedCentralCrossRef
9.
go back to reference Pfaehler E, Zhovannik I, Wei L et al (2021) A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features. Phys Imaging Radiat Oncol 20:69–75PubMedPubMedCentralCrossRef Pfaehler E, Zhovannik I, Wei L et al (2021) A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features. Phys Imaging Radiat Oncol 20:69–75PubMedPubMedCentralCrossRef
10.
go back to reference Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338PubMedCrossRef Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338PubMedCrossRef
11.
go back to reference McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653PubMedCrossRef McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653PubMedCrossRef
12.
go back to reference Parakh A, Lennartz S, An C et al (2021) Dual-energy CT images: pearls and pitfalls. Radiographics 41(1):98–119PubMedCrossRef Parakh A, Lennartz S, An C et al (2021) Dual-energy CT images: pearls and pitfalls. Radiographics 41(1):98–119PubMedCrossRef
13.
go back to reference Homayounieh F, Singh R, Nitiwarangkul C et al (2020) Semiautomatic segmentation and radiomics for dual-energy CT: a pilot study to differentiate benign and malignant hepatic lesions. AJR Am J Roentgenol 215(2):398–405PubMedCrossRef Homayounieh F, Singh R, Nitiwarangkul C et al (2020) Semiautomatic segmentation and radiomics for dual-energy CT: a pilot study to differentiate benign and malignant hepatic lesions. AJR Am J Roentgenol 215(2):398–405PubMedCrossRef
14.
go back to reference DodaKhera R, Homayounieh F, Lades F et al (2020) Can dual-energy computed tomography quantitative analysis and radiomics differentiate normal liver from hepatic steatosis and cirrhosis? J Comput Assist Tomogr 44(2):223–229CrossRef DodaKhera R, Homayounieh F, Lades F et al (2020) Can dual-energy computed tomography quantitative analysis and radiomics differentiate normal liver from hepatic steatosis and cirrhosis? J Comput Assist Tomogr 44(2):223–229CrossRef
15.
go back to reference Wang L, Zhang Y, Chen Y et al (2021) The performance of a dual-energy CT derived radiomics model in differentiating serosal invasion for advanced gastric cancer patients after neoadjuvant chemotherapy: iodine map combined with 120-kV equivalent mixed images. Front Oncol 10:562945PubMedPubMedCentralCrossRef Wang L, Zhang Y, Chen Y et al (2021) The performance of a dual-energy CT derived radiomics model in differentiating serosal invasion for advanced gastric cancer patients after neoadjuvant chemotherapy: iodine map combined with 120-kV equivalent mixed images. Front Oncol 10:562945PubMedPubMedCentralCrossRef
16.
go back to reference Chen Y, Yuan F, Wang L et al (2022) Evaluation of dual-energy CT derived radiomics signatures in predicting outcomes in patients with advanced gastric cancer after neoadjuvant chemotherapy. Eur J Surg Oncol 48(2):339–347PubMedCrossRef Chen Y, Yuan F, Wang L et al (2022) Evaluation of dual-energy CT derived radiomics signatures in predicting outcomes in patients with advanced gastric cancer after neoadjuvant chemotherapy. Eur J Surg Oncol 48(2):339–347PubMedCrossRef
17.
go back to reference An C, Li D, Li S et al (2022) Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 49(4):1187–1199PubMedCrossRef An C, Li D, Li S et al (2022) Deep learning radiomics of dual-energy computed tomography for predicting lymph node metastases of pancreatic ductal adenocarcinoma. Eur J Nucl Med Mol Imaging 49(4):1187–1199PubMedCrossRef
18.
go back to reference Chen Y, Zhong J, Wang L et al (2022) Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT. Eur Radiol 32(8):5480–5490PubMedPubMedCentralCrossRef Chen Y, Zhong J, Wang L et al (2022) Robustness of CT radiomics features: consistency within and between single-energy CT and dual-energy CT. Eur Radiol 32(8):5480–5490PubMedPubMedCentralCrossRef
19.
go back to reference Lennartz S, O’Shea A, Parakh A, Persigehl T, Baessler B, Kambadakone A (2022) Robustness of dual-energy CT-derived radiomic features across three different scanner types. Eur Radiol 32(3):1959–1970PubMedCrossRef Lennartz S, O’Shea A, Parakh A, Persigehl T, Baessler B, Kambadakone A (2022) Robustness of dual-energy CT-derived radiomic features across three different scanner types. Eur Radiol 32(3):1959–1970PubMedCrossRef
21.
22.
go back to reference Lennartz S, Parakh A, Cao J, Zopfs D, GroßeHokamp N, Kambadakone A (2021) Inter-scan and inter-scanner variation of quantitative dual-energy CT: evaluation with three different scanner types. Eur Radiol 31(7):4438–4451PubMedCrossRef Lennartz S, Parakh A, Cao J, Zopfs D, GroßeHokamp N, Kambadakone A (2021) Inter-scan and inter-scanner variation of quantitative dual-energy CT: evaluation with three different scanner types. Eur Radiol 31(7):4438–4451PubMedCrossRef
23.
go back to reference Lennartz S, Pisuchpen N, Parakh A et al (2022) Virtual unenhanced images: qualitative and quantitative comparison between different dual-energy CT scanners in a patient and phantom study. Invest Radiol 57(1):52–61PubMedCrossRef Lennartz S, Pisuchpen N, Parakh A et al (2022) Virtual unenhanced images: qualitative and quantitative comparison between different dual-energy CT scanners in a patient and phantom study. Invest Radiol 57(1):52–61PubMedCrossRef
24.
go back to reference Baliyan V, Kordbacheh H, Parameswaran B, Ganeshan B, Sahani D, Kambadakone A (2018) Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis. Abdom Radiol (NY) 43(10):2693–2701PubMedCrossRef Baliyan V, Kordbacheh H, Parameswaran B, Ganeshan B, Sahani D, Kambadakone A (2018) Virtual monoenergetic imaging in rapid kVp-switching dual-energy CT (DECT) of the abdomen: impact on CT texture analysis. Abdom Radiol (NY) 43(10):2693–2701PubMedCrossRef
25.
go back to reference Chatterjee A, Valliéres M, Forghani R, Seuntjens J (2021) Investigating the impact of the CT Hounsfield unit range on radiomic feature stability using dual energy CT data. Phys Med 88:272–277PubMedCrossRef Chatterjee A, Valliéres M, Forghani R, Seuntjens J (2021) Investigating the impact of the CT Hounsfield unit range on radiomic feature stability using dual energy CT data. Phys Med 88:272–277PubMedCrossRef
26.
go back to reference Euler A, Laqua FC, Cester D et al (2021) Virtual monoenergetic images of dual-energy ct-impact on repeatability, reproducibility, and classification in radiomics. Cancers (Basel) 13(18):4710PubMedCrossRef Euler A, Laqua FC, Cester D et al (2021) Virtual monoenergetic images of dual-energy ct-impact on repeatability, reproducibility, and classification in radiomics. Cancers (Basel) 13(18):4710PubMedCrossRef
27.
go back to reference Atwi NE, Smith DL, Flores CD (2019) Dual-energy CT in the obese: a preliminary retrospective review to evaluate quality and feasibility of the single-source dual-detector implementation. Abdom Radiol (NY) 44(2):783–789PubMedCrossRef Atwi NE, Smith DL, Flores CD (2019) Dual-energy CT in the obese: a preliminary retrospective review to evaluate quality and feasibility of the single-source dual-detector implementation. Abdom Radiol (NY) 44(2):783–789PubMedCrossRef
28.
go back to reference Darras KE, McLaughlin PD, Kang H et al (2016) Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70keV maximizes mural enhancement in acute small bowel obstruction. Eur J Radiol 85(5):950–956PubMedCrossRef Darras KE, McLaughlin PD, Kang H et al (2016) Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70keV maximizes mural enhancement in acute small bowel obstruction. Eur J Radiol 85(5):950–956PubMedCrossRef
29.
go back to reference Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262PubMedCrossRef Matsumoto K, Jinzaki M, Tanami Y, Ueno A, Yamada M, Kuribayashi S (2011) Virtual monochromatic spectral imaging with fast kilovoltage switching: improved image quality as compared with that obtained with conventional 120-kVp CT. Radiology 259(1):257–262PubMedCrossRef
30.
go back to reference Berenguer R, Pastor-Juan MDR, Canales-Vázquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288(2):407–415PubMedCrossRef Berenguer R, Pastor-Juan MDR, Canales-Vázquez J et al (2018) Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 288(2):407–415PubMedCrossRef
31.
go back to reference Fornacon-Wood I, Mistry H, Ackermann CJ et al (2020) Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol 30(11):6241–6250PubMedPubMedCentralCrossRef Fornacon-Wood I, Mistry H, Ackermann CJ et al (2020) Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol 30(11):6241–6250PubMedPubMedCentralCrossRef
32.
go back to reference Sullivan DC, Obuchowski NA, Kessler LG et al (2015) RSNA-QIBA Metrology Working Group. Metrology standards for quantitative imaging biomarkers. Radiology 277(3):813–825PubMedCrossRef Sullivan DC, Obuchowski NA, Kessler LG et al (2015) RSNA-QIBA Metrology Working Group. Metrology standards for quantitative imaging biomarkers. Radiology 277(3):813–825PubMedCrossRef
33.
go back to reference Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160PubMedCrossRef Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160PubMedCrossRef
34.
go back to reference Reed GF, Lynn F, Meade BD (2002) Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 9(6):1235–1239PubMedPubMedCentral Reed GF, Lynn F, Meade BD (2002) Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 9(6):1235–1239PubMedPubMedCentral
35.
go back to reference Bonett DG (2006) Confidence interval for a coefficient of quartile variation. Comput Stat Data Anal 50(11):2953–2957CrossRef Bonett DG (2006) Confidence interval for a coefficient of quartile variation. Comput Stat Data Anal 50(11):2953–2957CrossRef
36.
go back to reference Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163PubMedPubMedCentralCrossRef Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15(2):155–163PubMedPubMedCentralCrossRef
37.
go back to reference Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268PubMedCrossRef Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45(1):255–268PubMedCrossRef
38.
go back to reference Lin LI (2000) A note on the concordance correlation coefficient. Biometrics 56(1):324–325 Lin LI (2000) A note on the concordance correlation coefficient. Biometrics 56(1):324–325
39.
40.
go back to reference Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680PubMedCrossRef Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680PubMedCrossRef
41.
go back to reference Tu SJ, Chen WY, Wu CT (2021) Uncertainty measurement of radiomics features against inherent quantum noise in computed tomography imaging. Eur Radiol 31(10):7865–7875PubMedCrossRef Tu SJ, Chen WY, Wu CT (2021) Uncertainty measurement of radiomics features against inherent quantum noise in computed tomography imaging. Eur Radiol 31(10):7865–7875PubMedCrossRef
42.
go back to reference Le EPV, Rundo L, Tarkin JM et al (2021) Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events. Sci Rep 11(1):3499PubMedPubMedCentralCrossRef Le EPV, Rundo L, Tarkin JM et al (2021) Assessing robustness of carotid artery CT angiography radiomics in the identification of culprit lesions in cerebrovascular events. Sci Rep 11(1):3499PubMedPubMedCentralCrossRef
43.
go back to reference Dunning CAS, Rajendran K, Fletcher JG, McCollough CH, Leng S (2022) Impact of improved spatial resolution on radiomic features using photon-counting-detector CT. Proc SPIE Int Soc Opt Eng 12032:1203221PubMedPubMedCentral Dunning CAS, Rajendran K, Fletcher JG, McCollough CH, Leng S (2022) Impact of improved spatial resolution on radiomic features using photon-counting-detector CT. Proc SPIE Int Soc Opt Eng 12032:1203221PubMedPubMedCentral
44.
go back to reference D’Angelo T, Cicero G, Mazziotti S et al (2019) Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 92(1098):20180546PubMedPubMedCentralCrossRef D’Angelo T, Cicero G, Mazziotti S et al (2019) Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 92(1098):20180546PubMedPubMedCentralCrossRef
45.
go back to reference Albrecht MH, Vogl TJ, Martin SS et al (2019) Review of clinical applications for virtual monoenergetic dual-energy CT. Radiology 293(2):260–271PubMedCrossRef Albrecht MH, Vogl TJ, Martin SS et al (2019) Review of clinical applications for virtual monoenergetic dual-energy CT. Radiology 293(2):260–271PubMedCrossRef
46.
go back to reference Zhong J, Xia Y, Chen Y et al (2023) Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study. Eur Radiol 33(2):812–824PubMedCrossRef Zhong J, Xia Y, Chen Y et al (2023) Deep learning image reconstruction algorithm reduces image noise while alters radiomics features in dual-energy CT in comparison with conventional iterative reconstruction algorithms: a phantom study. Eur Radiol 33(2):812–824PubMedCrossRef
47.
48.
49.
go back to reference Foy JJ, Al-Hallaq HA, Grekoski V et al (2020) Harmonization of radiomic feature variability resulting from differences in CT image acquisition and reconstruction: assessment in a cadaveric liver. Phys Med Biol 65(20):205008PubMedCrossRef Foy JJ, Al-Hallaq HA, Grekoski V et al (2020) Harmonization of radiomic feature variability resulting from differences in CT image acquisition and reconstruction: assessment in a cadaveric liver. Phys Med Biol 65(20):205008PubMedCrossRef
50.
go back to reference Ligero M, Jordi-Ollero O, Bernatowicz K et al (2021) Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis. Eur Radiol 31(3):1460–1470PubMedCrossRef Ligero M, Jordi-Ollero O, Bernatowicz K et al (2021) Minimizing acquisition-related radiomics variability by image resampling and batch effect correction to allow for large-scale data analysis. Eur Radiol 31(3):1460–1470PubMedCrossRef
51.
go back to reference Beaumont H, Iannessi A, Cucchi JM, Bertrand AS, Lucidarme O (2022) Intra-scan inter-tissue variability can help harmonize radiomics features in CT. Eur Radiol 32(2):783–792PubMedCrossRef Beaumont H, Iannessi A, Cucchi JM, Bertrand AS, Lucidarme O (2022) Intra-scan inter-tissue variability can help harmonize radiomics features in CT. Eur Radiol 32(2):783–792PubMedCrossRef
52.
go back to reference Ibrahim A, Barufaldi B, Refaee T et al (2022) MaasPenn radiomics reproducibility score: a novel quantitative measure for evaluating the reproducibility of CT-based handcrafted radiomic features. Cancers (Basel) 14(7):1599PubMedCrossRef Ibrahim A, Barufaldi B, Refaee T et al (2022) MaasPenn radiomics reproducibility score: a novel quantitative measure for evaluating the reproducibility of CT-based handcrafted radiomic features. Cancers (Basel) 14(7):1599PubMedCrossRef
53.
go back to reference Bertolini M, Trojani V, Botti A et al (2022) Novel harmonization method for multi-centric radiomic studies in non-small cell lung cancer. Curr Oncol 29(8):5179–5194PubMedPubMedCentralCrossRef Bertolini M, Trojani V, Botti A et al (2022) Novel harmonization method for multi-centric radiomic studies in non-small cell lung cancer. Curr Oncol 29(8):5179–5194PubMedPubMedCentralCrossRef
54.
go back to reference Soliman MAS, Kelahan LC, Magnetta M et al (2022) A framework for harmonization of radiomics data for multicenter studies and clinical trials. JCO Clin Cancer Inform 6:e2200023PubMedCrossRef Soliman MAS, Kelahan LC, Magnetta M et al (2022) A framework for harmonization of radiomics data for multicenter studies and clinical trials. JCO Clin Cancer Inform 6:e2200023PubMedCrossRef
55.
go back to reference Li Y, Reyhan M, Zhang Y et al (2022) The impact of phantom design and material-dependence on repeatability and reproducibility of CT-based radiomics features. Med Phys 49(3):1648–1659PubMedCrossRef Li Y, Reyhan M, Zhang Y et al (2022) The impact of phantom design and material-dependence on repeatability and reproducibility of CT-based radiomics features. Med Phys 49(3):1648–1659PubMedCrossRef
Metadata
Title
Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability
Authors
Jingyu Zhong
Zilai Pan
Yong Chen
Lingyun Wang
Yihan Xia
Lan Wang
Jianying Li
Wei Lu
Xiaomeng Shi
Jianxing Feng
Fuhua Yan
Huan Zhang
Weiwu Yao
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Insights into Imaging / Issue 1/2023
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1186/s13244-023-01426-5

Other articles of this Issue 1/2023

Insights into Imaging 1/2023 Go to the issue