Skip to main content
Top
Published in: Forensic Science, Medicine and Pathology 1/2022

01-03-2022 | Computed Tomography | Original Article

RiFNet: Automated rib fracture detection in postmortem computed tomography

Authors: Victor Ibanez, Samuel Gunz, Svenja Erne, Eric J. Rawdon, Garyfalia Ampanozi, Sabine Franckenberg, Till Sieberth, Raffael Affolter, Lars C. Ebert, Akos Dobay

Published in: Forensic Science, Medicine and Pathology | Issue 1/2022

Login to get access

Abstract

Imaging techniques are widely used for medical diagnostics. In some cases, a lack of medical practitioners who can manually analyze the images can lead to a bottleneck. Consequently, we developed a custom-made convolutional neural network (RiFNet = Rib Fracture Network) that can detect rib fractures in postmortem computed tomography. In a retrospective cohort study, we retrieved PMCT data from 195 postmortem cases with rib fractures from July 2017 to April 2018 from our database. The computed tomography data were prepared using a plugin in the commercial imaging software Syngo.via whereby the rib cage was unfolded on a single-in-plane image reformation. Out of the 195 cases, a total of 585 images were extracted and divided into two groups labeled “with” and “without” fractures. These two groups were subsequently divided into training, validation, and test datasets to assess the performance of RiFNet. In addition, we explored the possibility of applying transfer learning techniques on our dataset by choosing two independent noncommercial off-the-shelf convolutional neural network architectures (ResNet50 V2 and Inception V3) and compared the performances of those two with RiFNet. When using pre-trained convolutional neural networks, we achieved an F1 score of 0.64 with Inception V3 and an F1 score of 0.61 with ResNet50 V2. We obtained an average F1 score of 0.91 ± 0.04 with RiFNet. RiFNet is efficient in detecting rib fractures on postmortem computed tomography. Transfer learning techniques are not necessarily well adapted to make classifications in postmortem computed tomography.
Appendix
Available only for authorised users
Literature
1.
go back to reference LeCun Y. Learning process in an asymmetric threshold network. In: Bienenstock E, Soulié FF, Weisbuch G, editors. Disordered systems and biological organization. NATO ASI Series (Series F: Computer and Systems Sciences). Proceedings. Berlin, Heidelberg: Springer; 1986. 233–40. LeCun Y. Learning process in an asymmetric threshold network. In: Bienenstock E, Soulié FF, Weisbuch G, editors. Disordered systems and biological organization. NATO ASI Series (Series F: Computer and Systems Sciences). Proceedings. Berlin, Heidelberg: Springer; 1986. 233–40.
2.
go back to reference LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1:541–51.CrossRef LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989;1:541–51.CrossRef
3.
4.
go back to reference Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Leg Med. 2012;19:126–31.CrossRef Ebert LC, Ampanozi G, Ruder TD, Hatch G, Thali MJ, Germerott T. CT based volume measurement and estimation in cases of pericardial effusion. J Forensic Leg Med. 2012;19:126–31.CrossRef
5.
go back to reference Umetsu S, Shimizu A, Watanabe H, Kobatake H, Nawano S. An automated segmentation algorithm for CT volumes of livers with atypical shapes and large pathological lesions. Ieice Trans Info Syst. 2014;E97d:951–63. Umetsu S, Shimizu A, Watanabe H, Kobatake H, Nawano S. An automated segmentation algorithm for CT volumes of livers with atypical shapes and large pathological lesions. Ieice Trans Info Syst. 2014;E97d:951–63.
6.
go back to reference Gaonkar B, Macyszyn L, Bilello M, Sadaghiani MS, Akbari H, Atthiah MA, et al. Automated tumor volumetry using computer-aided image segmentation. Acad Radiol. 2015;22:653–61.CrossRef Gaonkar B, Macyszyn L, Bilello M, Sadaghiani MS, Akbari H, Atthiah MA, et al. Automated tumor volumetry using computer-aided image segmentation. Acad Radiol. 2015;22:653–61.CrossRef
7.
go back to reference Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, et al. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging. 2018;37:1822–34.CrossRef Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, et al. Automatic multi-organ segmentation on abdominal CT with dense v-networks. IEEE Trans Med Imaging. 2018;37:1822–34.CrossRef
8.
go back to reference Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Automatic multi-organ segmentation on abdominal CT with dense V-networks. Med Im Anal. 2017;36:61–78.CrossRef Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Automatic multi-organ segmentation on abdominal CT with dense V-networks. Med Im Anal. 2017;36:61–78.CrossRef
9.
go back to reference Pena-Solorzano CA, Albrecht DW, Bassed RB, Burke MD, Dimmock MR. Findings from machine learning in clinical medical imaging applications - Lessons for translation to the forensic setting. Forensic Sci Int. 2020;316. Pena-Solorzano CA, Albrecht DW, Bassed RB, Burke MD, Dimmock MR. Findings from machine learning in clinical medical imaging applications - Lessons for translation to the forensic setting. Forensic Sci Int. 2020;316.
10.
go back to reference Dobay A, Ford J, Decker S, Ampanozi G, Franckenberg S, Affolter R, et al. Potential use of deep learning techniques for postmortem imaging. Forensic Sci Med Pathol. 2020;16:671–9.CrossRef Dobay A, Ford J, Decker S, Ampanozi G, Franckenberg S, Affolter R, et al. Potential use of deep learning techniques for postmortem imaging. Forensic Sci Med Pathol. 2020;16:671–9.CrossRef
11.
go back to reference Schulze C, Hoppe H, Schweitzer W, Schwendener N, Grabherr S, Jackowski C. Rib fractures at postmortem computed tomography (PMCT) validated against the autopsy. Forensic Sci Int. 2013;233:90–8.CrossRef Schulze C, Hoppe H, Schweitzer W, Schwendener N, Grabherr S, Jackowski C. Rib fractures at postmortem computed tomography (PMCT) validated against the autopsy. Forensic Sci Int. 2013;233:90–8.CrossRef
12.
go back to reference Collado-Mesa F, Alvarez E, Arheart K. The role of artificial intelligence in diagnostic radiology: A survey at a single radiology residency training program. J Am Coll Radiol. 2018;15:1753–7.CrossRef Collado-Mesa F, Alvarez E, Arheart K. The role of artificial intelligence in diagnostic radiology: A survey at a single radiology residency training program. J Am Coll Radiol. 2018;15:1753–7.CrossRef
13.
go back to reference Andriole KP, Wolfe JM, Khorasani R, Treves ST, Getty DJ, Jacobson FL, et al. Optimizing analysis, visualization, and navigation of large image data sets: One 5000-section CT scan can ruin your whole day. Radiology. 2011;259:346–62.CrossRef Andriole KP, Wolfe JM, Khorasani R, Treves ST, Getty DJ, Jacobson FL, et al. Optimizing analysis, visualization, and navigation of large image data sets: One 5000-section CT scan can ruin your whole day. Radiology. 2011;259:346–62.CrossRef
14.
go back to reference Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci USA. 2018;115:11591–6.CrossRef Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci USA. 2018;115:11591–6.CrossRef
15.
go back to reference Bluthgen C, Becker AS, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T. Detection and localization of distal radius fractures: Deep learning system versus radiologists. Eur J Radiol. 2020;126:108925. Bluthgen C, Becker AS, Vittoria de Martini I, Meier A, Martini K, Frauenfelder T. Detection and localization of distal radius fractures: Deep learning system versus radiologists. Eur J Radiol. 2020;126:108925.
16.
go back to reference Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73:439–45.CrossRef Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73:439–45.CrossRef
17.
go back to reference Mawatari T, Hayashida Y, Katsuragawa S, Yoshimatsu Y, Hamamura T, Anai K, et al. The effect of deep convolutional neural networks on radiologists’ performance in the detection of hip fractures on digital pelvic radiographs. Eur J Radiol. 2020;130. Mawatari T, Hayashida Y, Katsuragawa S, Yoshimatsu Y, Hamamura T, Anai K, et al. The effect of deep convolutional neural networks on radiologists’ performance in the detection of hip fractures on digital pelvic radiographs. Eur J Radiol. 2020;130.
18.
go back to reference Kitamura G, Chung CY, Moore BE 2nd. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation. J Digit Imaging. 2019;32:672–7.CrossRef Kitamura G, Chung CY, Moore BE 2nd. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation. J Digit Imaging. 2019;32:672–7.CrossRef
19.
go back to reference Burns JE, Yao JH, Munoz H, Summers RM. Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology. 2016;278:64–73.CrossRef Burns JE, Yao JH, Munoz H, Summers RM. Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology. 2016;278:64–73.CrossRef
20.
go back to reference Weikert T, Noordtzij LA, Bremerich J, Stieltjes B, Parmar V, Cyriac J, et al. Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol. 2020;21:891–9.CrossRef Weikert T, Noordtzij LA, Bremerich J, Stieltjes B, Parmar V, Cyriac J, et al. Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol. 2020;21:891–9.CrossRef
21.
go back to reference Jin L, Yang J, Kuang K, Ni B, Gao Y, Sun Y, et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. EBioMedicine. 2020;62. Jin L, Yang J, Kuang K, Ni B, Gao Y, Sun Y, et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. EBioMedicine. 2020;62.
22.
go back to reference Zhou QQ, Wang J, Tang W, Hu ZC, Xia ZY, Li XS, et al. Automatic detection and classification of rib fractures on thoracic CT using convolutional neural network: accuracy and feasibility. Korean J Radiol. 2020;21:869–79.CrossRef Zhou QQ, Wang J, Tang W, Hu ZC, Xia ZY, Li XS, et al. Automatic detection and classification of rib fractures on thoracic CT using convolutional neural network: accuracy and feasibility. Korean J Radiol. 2020;21:869–79.CrossRef
23.
go back to reference Meng XH, Wu DJ, Wang Z, Ma XL, Dong XM, Liu AE, et al. A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance. Skeletal Radiol. 2021;50:1821–8.CrossRef Meng XH, Wu DJ, Wang Z, Ma XL, Dong XM, Liu AE, et al. A fully automated rib fracture detection system on chest CT images and its impact on radiologist performance. Skeletal Radiol. 2021;50:1821–8.CrossRef
24.
go back to reference Hu Y, He X, Zhang R, Guo L, Gao L, Wang J. Slice grouping and aggregation network for auxiliary diagnosis of rib fractures. Biomed Signal Process Cont. 2021;67. Hu Y, He X, Zhang R, Guo L, Gao L, Wang J. Slice grouping and aggregation network for auxiliary diagnosis of rib fractures. Biomed Signal Process Cont. 2021;67.
25.
go back to reference Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention – MICCAI. Cham: Springer; 2015. p. 234–41.CrossRef Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention – MICCAI. Cham: Springer; 2015. p. 234–41.CrossRef
26.
go back to reference Yang KM, Lynch M, O’Donnell C. “Buckle” rib fracture: An artifact following cardio-pulmonary resuscitation detected on postmortem CT. Leg Med. 2011;13:233–9.CrossRef Yang KM, Lynch M, O’Donnell C. “Buckle” rib fracture: An artifact following cardio-pulmonary resuscitation detected on postmortem CT. Leg Med. 2011;13:233–9.CrossRef
27.
go back to reference Cattaneo C, Marinelli E, Di Giancamillo A, Di Giancamillo M, Travetti O, Vigano L, et al. Sensitivity of autopsy and radiological examination in detecting bone fractures in an animal model: implications for the assessment of fatal child physical abuse. Forensic Sci Int. 2006;164:131–7.CrossRef Cattaneo C, Marinelli E, Di Giancamillo A, Di Giancamillo M, Travetti O, Vigano L, et al. Sensitivity of autopsy and radiological examination in detecting bone fractures in an animal model: implications for the assessment of fatal child physical abuse. Forensic Sci Int. 2006;164:131–7.CrossRef
28.
go back to reference Glemser PA, Pfleiderer M, Heger A, Tremper J, Krauskopf A, Schlemmer HP, et al. New bone post-processing tools in forensic imaging: a multi-reader feasibility study to evaluate detection time and diagnostic accuracy in rib fracture assessment. Int J Legal Med. 2017;131:489–96.CrossRef Glemser PA, Pfleiderer M, Heger A, Tremper J, Krauskopf A, Schlemmer HP, et al. New bone post-processing tools in forensic imaging: a multi-reader feasibility study to evaluate detection time and diagnostic accuracy in rib fracture assessment. Int J Legal Med. 2017;131:489–96.CrossRef
29.
go back to reference Ringl H, Lazar M, Topker M, Woitek R, Prosch H, Asenbaum U, et al. The ribs unfolded - a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients. Eur Radiol. 2015;25:1865–74.CrossRef Ringl H, Lazar M, Topker M, Woitek R, Prosch H, Asenbaum U, et al. The ribs unfolded - a CT visualization algorithm for fast detection of rib fractures: effect on sensitivity and specificity in trauma patients. Eur Radiol. 2015;25:1865–74.CrossRef
30.
go back to reference He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Paper presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Paper presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016.
31.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. 2818–26. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. 2818–26.
32.
go back to reference Egger C, Vaucher P, Doenz F, Palmiere C, Mangin P, Grabherr S. Development and validation of a postmortem radiological alteration index: the RA-Index. Int J Legal Med. 2012;126:559–66.CrossRef Egger C, Vaucher P, Doenz F, Palmiere C, Mangin P, Grabherr S. Development and validation of a postmortem radiological alteration index: the RA-Index. Int J Legal Med. 2012;126:559–66.CrossRef
33.
go back to reference Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, et al. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10:583–606.CrossRef Flach PM, Gascho D, Schweitzer W, Ruder TD, Berger N, Ross SG, et al. Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol. 2014;10:583–606.CrossRef
34.
go back to reference Abadi Mi, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. USENIX Association. 2016. 265–83. Abadi Mi, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation. USENIX Association. 2016. 265–83.
35.
go back to reference Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. 2017. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. 2017.
Metadata
Title
RiFNet: Automated rib fracture detection in postmortem computed tomography
Authors
Victor Ibanez
Samuel Gunz
Svenja Erne
Eric J. Rawdon
Garyfalia Ampanozi
Sabine Franckenberg
Till Sieberth
Raffael Affolter
Lars C. Ebert
Akos Dobay
Publication date
01-03-2022
Publisher
Springer US
Published in
Forensic Science, Medicine and Pathology / Issue 1/2022
Print ISSN: 1547-769X
Electronic ISSN: 1556-2891
DOI
https://doi.org/10.1007/s12024-021-00431-8

Other articles of this Issue 1/2022

Forensic Science, Medicine and Pathology 1/2022 Go to the issue

Acknowledgments

Acknowledgments