Skip to main content
Top
Published in: BMC Oral Health 1/2021

01-12-2021 | Computed Tomography | Research article

Palatal bone thickness at the implantation area of maxillary skeletal expander in adult patients with skeletal Class III malocclusion: a cone-beam computed tomography study

Authors: Weiting Chen, Kaili Zhang, Dongxu Liu

Published in: BMC Oral Health | Issue 1/2021

Login to get access

Abstract

Background

Maxillary skeletal expanders (MSE) is effective for the treatment of maxillary transverse deformity. The purpose of the study was to analyse the palatal bone thickness in the of MSE implantation in patients with skeletal class III malocclusion.

Methods

A total of 80 adult patients (40 males, 40 females) with an average angle before treatment were divided into two groups, the skeletal class III malocclusion group and the skeletal I malocclusion group, based on sagittal facial type. Each group consisted of 40 patients, with a male to female ratio of 1:1. A cone-beam computed tomography scanner was employed to obtain DICOM data for all patients. The palatal bone thickness was measured at 45 sites with MIMICS 21.0 software, and SPSS 22.0 software was employed for statistical analysis. The bone thickness at different regions of the palate in the same group was analysed with one-way repeated measures ANOVA. Fisher’s least significant difference-t method was used for the comparison of pairs, and independent sample t test was employed to determine the significance of differences in the bone thickness at the same sites between the two groups.

Results

Palatal bone thickness was greater in the middle region of the midline area (P < 0.01), while the thickness in the middle and lateral areas in both groups was generally lower (P < 0.001). The bone in the anterior, middle, and posterior regions of the two groups became increasingly thin from the middle area toward the parapalatine region. The palatal bone was significantly thinner in the area 9.0 mm before the transverse palatine suture in the midline area, 9.0 mm before and after the transverse palatine suture in the middle area, and 9.0 mm after the transverse palatine suture in the lateral area.

Conclusion

The palatal bone was thinner in patients with class III malocclusion than in patients with class I malocclusion, with significant differences in some areas. The differences in bone thickness should be considered when MSE miniscrews are implanted. The anterior and middle palatal areas are safer for the implantation of miniscrews, while the thinness of the posterior palatal bone increases the risk of the miniscrews falling off and perforating.
Literature
1.
go back to reference De Frutos-Valle L, Martin C, Alarcon JA, Palma-Fernandez JC, Iglesias-Linares A. Subclustering in skeletal class III phenotypes of different ethnic origins: a systematic review. J Evid Based Dent Pract. 2019;19(1):34–52.PubMedCrossRef De Frutos-Valle L, Martin C, Alarcon JA, Palma-Fernandez JC, Iglesias-Linares A. Subclustering in skeletal class III phenotypes of different ethnic origins: a systematic review. J Evid Based Dent Pract. 2019;19(1):34–52.PubMedCrossRef
2.
go back to reference Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: a systematic review. Dental Press J Orthod. 2018;23(6):40.PubMedPubMedCentralCrossRef Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: a systematic review. Dental Press J Orthod. 2018;23(6):40.PubMedPubMedCentralCrossRef
3.
go back to reference Tang EL. The prevalence of malocclusion amongst Hong Kong male dental students. Br J Orthod. 1994;21(1):57–63.PubMedCrossRef Tang EL. The prevalence of malocclusion amongst Hong Kong male dental students. Br J Orthod. 1994;21(1):57–63.PubMedCrossRef
4.
go back to reference Hwang S, Song J, Lee J, Choi YJ, Chung CJ, Kim K. Three-dimensional evaluation of dentofacial transverse widths in adults with different sagittal facial patterns. Am J Orthod Dentofac. 2018;154(3):365–74.CrossRef Hwang S, Song J, Lee J, Choi YJ, Chung CJ, Kim K. Three-dimensional evaluation of dentofacial transverse widths in adults with different sagittal facial patterns. Am J Orthod Dentofac. 2018;154(3):365–74.CrossRef
5.
go back to reference Zere E, Chaudhari PK, Sharan J, Dhingra K, Tiwari N. Developing Class III malocclusions: challenges and solutions. Clin Cosmet Investig Dent. 2018;10:99–116.PubMedPubMedCentralCrossRef Zere E, Chaudhari PK, Sharan J, Dhingra K, Tiwari N. Developing Class III malocclusions: challenges and solutions. Clin Cosmet Investig Dent. 2018;10:99–116.PubMedPubMedCentralCrossRef
7.
go back to reference Reyneke JP, Conley RS. Surgical/orthodontic correction of transverse maxillary discrepancies. Oral Maxillofac Surg Clin N Am. 2020;32(1):53–69.CrossRef Reyneke JP, Conley RS. Surgical/orthodontic correction of transverse maxillary discrepancies. Oral Maxillofac Surg Clin N Am. 2020;32(1):53–69.CrossRef
8.
go back to reference Lee K, Choi S, Choi T, Shi K, Keum B. Maxillary transverse expansion in adults: rationale, appliance design, and treatment outcomes. Semin Orthod. 2018;24(1):52–65.CrossRef Lee K, Choi S, Choi T, Shi K, Keum B. Maxillary transverse expansion in adults: rationale, appliance design, and treatment outcomes. Semin Orthod. 2018;24(1):52–65.CrossRef
9.
go back to reference Paludo BD, Franzzotti SAE, Wilson MA, Won M. Non-surgical treatment of transverse deficiency in adults using microimplant-assisted rapid palatal expansion (MARPE). Dent Press J Orthod. 2017;22(1):110–25.CrossRef Paludo BD, Franzzotti SAE, Wilson MA, Won M. Non-surgical treatment of transverse deficiency in adults using microimplant-assisted rapid palatal expansion (MARPE). Dent Press J Orthod. 2017;22(1):110–25.CrossRef
10.
go back to reference Carlson C, Sung J, McComb RW, Machado AW, Moon W. Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. Am J Orthod Dentofac. 2016;149(5):716–28.CrossRef Carlson C, Sung J, McComb RW, Machado AW, Moon W. Microimplant-assisted rapid palatal expansion appliance to orthopedically correct transverse maxillary deficiency in an adult. Am J Orthod Dentofac. 2016;149(5):716–28.CrossRef
13.
go back to reference Kim H, Yun H, Park H, Kim D, Park Y. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofac. 2006;130(2):177–82.CrossRef Kim H, Yun H, Park H, Kim D, Park Y. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am J Orthod Dentofac. 2006;130(2):177–82.CrossRef
14.
go back to reference Kim J, Kang S, Seo K, et al. Nanoscale bonding between human bone and titanium surfaces: osseohybridization. Biomed Res Int. 2015;2015:960410.PubMedPubMedCentral Kim J, Kang S, Seo K, et al. Nanoscale bonding between human bone and titanium surfaces: osseohybridization. Biomed Res Int. 2015;2015:960410.PubMedPubMedCentral
15.
go back to reference Bourassa C, Hosein YK, Pollmann SI, et al. In-vitro comparison of different palatal sites for orthodontic miniscrew insertion: effect of bone quality and quantity on primary stability. Am J Orthod Dentofac. 2018;154(6):809–19.CrossRef Bourassa C, Hosein YK, Pollmann SI, et al. In-vitro comparison of different palatal sites for orthodontic miniscrew insertion: effect of bone quality and quantity on primary stability. Am J Orthod Dentofac. 2018;154(6):809–19.CrossRef
16.
go back to reference Pan C, Liu P, Tseng Y, Chou S, Wu C, Chang H. Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. J Dent Sci. 2019;14(4):383–8.PubMedPubMedCentralCrossRef Pan C, Liu P, Tseng Y, Chou S, Wu C, Chang H. Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. J Dent Sci. 2019;14(4):383–8.PubMedPubMedCentralCrossRef
17.
go back to reference Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farman AG. Linear accuracy of cone beam CT derived 3D images. Angle Orthod. 2009;79(1):150–7.PubMedCrossRef Brown AA, Scarfe WC, Scheetz JP, Silveira AM, Farman AG. Linear accuracy of cone beam CT derived 3D images. Angle Orthod. 2009;79(1):150–7.PubMedCrossRef
18.
go back to reference Yadav S, Sachs E, Vishwanath M, et al. Gender and growth variation in palatal bone thickness and density for mini-implant placement. Prog Orthod. 2018;19(1). Yadav S, Sachs E, Vishwanath M, et al. Gender and growth variation in palatal bone thickness and density for mini-implant placement. Prog Orthod. 2018;19(1).
19.
20.
go back to reference Hourfar J, Kanavakis G, Bister D, et al. Three dimensional anatomical exploration of the anterior hard palate at the level of the third ruga for the placement of mini-implants—a cone-beam CT study. Eur J Orthod. 2015;37(6):589–95.PubMedCrossRef Hourfar J, Kanavakis G, Bister D, et al. Three dimensional anatomical exploration of the anterior hard palate at the level of the third ruga for the placement of mini-implants—a cone-beam CT study. Eur J Orthod. 2015;37(6):589–95.PubMedCrossRef
21.
go back to reference Winsauer H, Vlachojannis C, Bumann A, Vlachojannis J, Chrubasik S. Paramedian vertical palatal bone height for mini-implant insertion: a systematic review. Eur J Orthod. 2014;36(5):541–9.PubMedCrossRef Winsauer H, Vlachojannis C, Bumann A, Vlachojannis J, Chrubasik S. Paramedian vertical palatal bone height for mini-implant insertion: a systematic review. Eur J Orthod. 2014;36(5):541–9.PubMedCrossRef
22.
go back to reference Kang S, Lee S, Ahn S, Heo M, Kim T. Bone thickness of the palate for orthodontic mini-implant anchorage in adults. Am J Orthod Dentofac. 2007;131(4):S74-81.CrossRef Kang S, Lee S, Ahn S, Heo M, Kim T. Bone thickness of the palate for orthodontic mini-implant anchorage in adults. Am J Orthod Dentofac. 2007;131(4):S74-81.CrossRef
23.
go back to reference Ryu J, Park JH, Thu TVT, Bayome M, Kim Y, Kook Y. Palatal bone thickness compared with cone-beam computed tomography in adolescents and adults for mini-implant placement. Am J Orthod Dentofac. 2012;142(2):207–12.CrossRef Ryu J, Park JH, Thu TVT, Bayome M, Kim Y, Kook Y. Palatal bone thickness compared with cone-beam computed tomography in adolescents and adults for mini-implant placement. Am J Orthod Dentofac. 2012;142(2):207–12.CrossRef
24.
go back to reference Suteerapongpun P, Wattanachai T, Janhom A, Tripuwabhrut P, Jotikasthira D. Quantitative evaluation of palatal bone thickness in patients with normal and open vertical skeletal configurations using cone-beam computed tomography. Imaging Sci Dent. 2018;48(1):51–7.PubMedPubMedCentralCrossRef Suteerapongpun P, Wattanachai T, Janhom A, Tripuwabhrut P, Jotikasthira D. Quantitative evaluation of palatal bone thickness in patients with normal and open vertical skeletal configurations using cone-beam computed tomography. Imaging Sci Dent. 2018;48(1):51–7.PubMedPubMedCentralCrossRef
25.
go back to reference Wang M, Sun Y, Yu Y, Ding X. Evaluation of palatal bone thickness for insertion of orthodontic mini-implants in adults and adolescents. J Craniofac Surg. 2017;28(6):1468–71.PubMedCrossRef Wang M, Sun Y, Yu Y, Ding X. Evaluation of palatal bone thickness for insertion of orthodontic mini-implants in adults and adolescents. J Craniofac Surg. 2017;28(6):1468–71.PubMedCrossRef
26.
go back to reference Minkui Fu, Mao X. Cephalometric study of 144 normal occlusion Chinese people. J Peking Univ Health Sci. 1965;04:251–6. Minkui Fu, Mao X. Cephalometric study of 144 normal occlusion Chinese people. J Peking Univ Health Sci. 1965;04:251–6.
27.
go back to reference Minkui Fu, Shen G. Orthodontic diagnosis of malocclusion. In: Minkui Fu, Ding Y, Wang L, editors. Orthodontics. Beijing: People’s Medical Publishing House; 2012. p. 63–98. Minkui Fu, Shen G. Orthodontic diagnosis of malocclusion. In: Minkui Fu, Ding Y, Wang L, editors. Orthodontics. Beijing: People’s Medical Publishing House; 2012. p. 63–98.
28.
go back to reference Wang Y, Qiu Y, Liu H, He J, Fan X. Quantitative evaluation of palatal bone thickness for the placement of orthodontic miniscrews in adults with different facial types. Saudi Med J. 2017;38(10):1051–7.PubMedPubMedCentralCrossRef Wang Y, Qiu Y, Liu H, He J, Fan X. Quantitative evaluation of palatal bone thickness for the placement of orthodontic miniscrews in adults with different facial types. Saudi Med J. 2017;38(10):1051–7.PubMedPubMedCentralCrossRef
29.
go back to reference Cantarella D, Dominguez-Mompell R, Moschik C, et al. Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am J Orthod Dentofac. 2018;154(3):337–45.CrossRef Cantarella D, Dominguez-Mompell R, Moschik C, et al. Midfacial changes in the coronal plane induced by microimplant-supported skeletal expander, studied with cone-beam computed tomography images. Am J Orthod Dentofac. 2018;154(3):337–45.CrossRef
30.
go back to reference Maspero C, Cavagnetto D, Fama A, Giannini L, Galbiati G, Farronato M. Hyrax versus transverse sagittal maxillary expander: an assessment of arch changes on dental casts. A retrospective study. Saudi Dent J. 2020;32(2):93–100.PubMedCrossRef Maspero C, Cavagnetto D, Fama A, Giannini L, Galbiati G, Farronato M. Hyrax versus transverse sagittal maxillary expander: an assessment of arch changes on dental casts. A retrospective study. Saudi Dent J. 2020;32(2):93–100.PubMedCrossRef
31.
go back to reference Huizinga MP, Meulstee JW, Dijkstra PU, Schepers RH, Jansma J. Bone-borne surgically assisted rapid maxillary expansion: a retrospective three-dimensional evaluation of the asymmetry in expansion. J Cranio Maxillofac Surg. 2018;46(8):1329–35.CrossRef Huizinga MP, Meulstee JW, Dijkstra PU, Schepers RH, Jansma J. Bone-borne surgically assisted rapid maxillary expansion: a retrospective three-dimensional evaluation of the asymmetry in expansion. J Cranio Maxillofac Surg. 2018;46(8):1329–35.CrossRef
32.
go back to reference Cunha A, Lee H, Nojima LI, Nojima M, Lee KJ. Miniscrew-assisted rapid palatal expansion for managing arch perimeter in an adult patient. Dental Press J Orthod. 2017;22(3):97–108.PubMedPubMedCentralCrossRef Cunha A, Lee H, Nojima LI, Nojima M, Lee KJ. Miniscrew-assisted rapid palatal expansion for managing arch perimeter in an adult patient. Dental Press J Orthod. 2017;22(3):97–108.PubMedPubMedCentralCrossRef
33.
go back to reference Melsen B. Palatal growth studied on human autopsy material. A histologic microradiographic study. Am J Orthod. 1975;68:42–54.PubMedCrossRef Melsen B. Palatal growth studied on human autopsy material. A histologic microradiographic study. Am J Orthod. 1975;68:42–54.PubMedCrossRef
34.
go back to reference Carvalho PHA, Moura LB, Trento GS, et al. Surgically assisted rapid maxillary expansion: a systematic review of complications. Int J Oral Max Surg. 2020;49(3):325–32.CrossRef Carvalho PHA, Moura LB, Trento GS, et al. Surgically assisted rapid maxillary expansion: a systematic review of complications. Int J Oral Max Surg. 2020;49(3):325–32.CrossRef
35.
go back to reference Choi SH, Shi KK, Cha JY, Park YC, Lee KJ. Nonsurgical miniscrew-assisted rapid maxillary expansion results in acceptable stability in young adults. Angle Orthod. 2016;86(5):713–20.PubMedCrossRefPubMedCentral Choi SH, Shi KK, Cha JY, Park YC, Lee KJ. Nonsurgical miniscrew-assisted rapid maxillary expansion results in acceptable stability in young adults. Angle Orthod. 2016;86(5):713–20.PubMedCrossRefPubMedCentral
36.
go back to reference Park JJ, Park Y, Lee K, Cha J, Tahk JH, Choi YJ. Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: a cone-beam computed tomography study. Korean J Orthod. 2017;47(2):77–86.PubMedPubMedCentralCrossRef Park JJ, Park Y, Lee K, Cha J, Tahk JH, Choi YJ. Skeletal and dentoalveolar changes after miniscrew-assisted rapid palatal expansion in young adults: a cone-beam computed tomography study. Korean J Orthod. 2017;47(2):77–86.PubMedPubMedCentralCrossRef
37.
go back to reference Lagravère MO, Carey J, Heo G, Toogood RW, Major PW. Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: a randomized clinical trial. Am J Orthod Dentofac. 2010;137(3):301–4.CrossRef Lagravère MO, Carey J, Heo G, Toogood RW, Major PW. Transverse, vertical, and anteroposterior changes from bone-anchored maxillary expansion vs traditional rapid maxillary expansion: a randomized clinical trial. Am J Orthod Dentofac. 2010;137(3):301–4.CrossRef
39.
go back to reference Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofac. 2012;142(5):577–95.CrossRef Papageorgiou SN, Zogakis IP, Papadopoulos MA. Failure rates and associated risk factors of orthodontic miniscrew implants: a meta-analysis. Am J Orthod Dentofac. 2012;142(5):577–95.CrossRef
40.
go back to reference Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Max Implants. 2007;22(5):779. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Max Implants. 2007;22(5):779.
41.
go back to reference Poon Y, Chang H, Tseng Y, et al. Palatal bone thickness and associated factors in adult miniscrew placements: a cone-beam computed tomography study. Kaohsiung J Med Sci. 2015;31(5):265–70.PubMedCrossRef Poon Y, Chang H, Tseng Y, et al. Palatal bone thickness and associated factors in adult miniscrew placements: a cone-beam computed tomography study. Kaohsiung J Med Sci. 2015;31(5):265–70.PubMedCrossRef
42.
go back to reference Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog Orthod. 2006;7(2):164–74.PubMed Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative evaluation with CBCT of palatal bone thickness in growing patients. Prog Orthod. 2006;7(2):164–74.PubMed
43.
go back to reference Ichinohe M, Motoyoshi M, Inaba M, et al. Risk factors for failure of orthodontic mini-screws placed in the median palate. J Oral Sci. 2019;61(1):13–8.PubMedCrossRef Ichinohe M, Motoyoshi M, Inaba M, et al. Risk factors for failure of orthodontic mini-screws placed in the median palate. J Oral Sci. 2019;61(1):13–8.PubMedCrossRef
44.
go back to reference Crismani AG, Bernhart T, Tangl S, Bantleon HP, Watzek G. Nasal cavity perforation by palatal implants: false-positive records on the lateral cephalogram. Int J Oral Max Implants. 2005;20(2):267–73. Crismani AG, Bernhart T, Tangl S, Bantleon HP, Watzek G. Nasal cavity perforation by palatal implants: false-positive records on the lateral cephalogram. Int J Oral Max Implants. 2005;20(2):267–73.
45.
go back to reference Nojima LI, Nojima M, Cunha A, Guss NO, Santnna EF. Mini-implant selection protocol applied to MARPE. Dent Press J Orthod. 2018;23(5):93–101.CrossRef Nojima LI, Nojima M, Cunha A, Guss NO, Santnna EF. Mini-implant selection protocol applied to MARPE. Dent Press J Orthod. 2018;23(5):93–101.CrossRef
Metadata
Title
Palatal bone thickness at the implantation area of maxillary skeletal expander in adult patients with skeletal Class III malocclusion: a cone-beam computed tomography study
Authors
Weiting Chen
Kaili Zhang
Dongxu Liu
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2021
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-021-01489-0

Other articles of this Issue 1/2021

BMC Oral Health 1/2021 Go to the issue