Skip to main content
Top
Published in: EJNMMI Research 1/2019

Open Access 01-12-2019 | Computed Tomography | Original research

Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice

Authors: Francesco Cicone, Silvano Gnesin, Thibaut Denoël, Thierry Stora, Nicholas P. van der Meulen, Cristina Müller, Christiaan Vermeulen, Martina Benešová, Ulli Köster, Karl Johnston, Ernesto Amato, Lucrezia Auditore, George Coukos, Michael Stabin, Niklaus Schaefer, David Viertl, John O. Prior

Published in: EJNMMI Research | Issue 1/2019

Login to get access

Abstract

Background

Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter 152Tb [(T1/2 = 17.5 h, Eβ+mean = 1140 keV (20.3%)]. Image-based absorbed dose estimates were compared with those obtained from the extrapolation to 152Tb of a classical biodistribution experiment using the same antibody fragment labeled with 111In.
152Tb was produced by proton-induced spallation in a tantalum target, followed by mass separation and cation exchange chromatography. The endosialin-targeting scFv78-Fc fusion protein was conjugated with the chelator p-SCN-Bn-CHX-A”-DTPA, followed by labeling with either 152Tb or 111In. Micro-PET images of four immunodeficient female mice bearing RD-ES tumor xenografts were acquired 4, 24, and 48 h after the i.v. injection of 152Tb-CHX-DTPA-scFv78-Fc. After count/activity camera calibration, time-integrated activity coefficients (TIACs) were obtained for the following compartments: heart, lungs, liver, kidneys, intestines, tumor, and whole body, manually segmented on CT. For comparison, radiation dose estimates of 152Tb-CHX-DTPA-scFv78-Fc were extrapolated from mice dissected 4, 24, 48, and 96 h after the injection of 111In-CHX-DTPA-scFv78-Fc (3–5 mice per group). Imaging-derived and biodistribution-derived organ TIACs were used as input in the 25 g mouse model of OLINDA/EXM® 2.0, after appropriate mass rescaling. Tumor absorbed doses were obtained using the OLINDA2 sphere model. Finally, the relative percent difference (RD%) between absorbed doses obtained from imaging and biodistribution were calculated.

Results

RD% between microPET-based dosimetry and biodistribution-based dose extrapolations were + 12, − 14, and + 17 for the liver, the kidneys, and the tumors, respectively. Compared to biodistribution, the imaging method significantly overestimates the absorbed doses to the heart and the lungs (+ 89 and + 117% dose difference, respectively).

Conclusions

MicroPET-based dosimetry of 152Tb is feasible, and the comparison with organ harvesting resulted in acceptable dose discrepancies for body districts that can be segmented on CT. These encouraging results warrant additional validation using radiolabeled biomolecules with a different biodistribution pattern.
Literature
1.
go back to reference Funk T, Sun M, Hasegawa BH. Radiation dose estimate in small animal SPECT and PET. Med Phys. 2004;31:2680–6.CrossRef Funk T, Sun M, Hasegawa BH. Radiation dose estimate in small animal SPECT and PET. Med Phys. 2004;31:2680–6.CrossRef
2.
go back to reference Boutaleb S, Pouget JP, Hindorf C, Pèlegrin A, Barbet J, Kotzki PO, Bardiès M. Impact of mouse model on preclinical dosimetry in targeted radionuclide therapy. Proc IEEE. 2009;97:2076–85.CrossRef Boutaleb S, Pouget JP, Hindorf C, Pèlegrin A, Barbet J, Kotzki PO, Bardiès M. Impact of mouse model on preclinical dosimetry in targeted radionuclide therapy. Proc IEEE. 2009;97:2076–85.CrossRef
3.
go back to reference Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310.CrossRef Stabin MG, Siegel JA. Physical models and dose factors for use in internal dose assessment. Health Phys. 2003;85:294–310.CrossRef
4.
go back to reference Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS. Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol. 2004;6:149–59.CrossRef Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS. Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol. 2004;6:149–59.CrossRef
5.
go back to reference Keenan MA, Stabin MG, Segars WP, Fernald MJ. RADAR realistic animal model series for dose assessment. J Nucl Med. 2010;51:471–6.CrossRef Keenan MA, Stabin MG, Segars WP, Fernald MJ. RADAR realistic animal model series for dose assessment. J Nucl Med. 2010;51:471–6.CrossRef
6.
go back to reference Stabin MG, Siegel JA. RADAR dose estimate report: a compendium of radiopharmaceutical dose estimates based on OLINDA/EXM version 2.0. J Nucl Med. 2018;59:154–60.CrossRef Stabin MG, Siegel JA. RADAR dose estimate report: a compendium of radiopharmaceutical dose estimates based on OLINDA/EXM version 2.0. J Nucl Med. 2018;59:154–60.CrossRef
7.
go back to reference Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, Krenning EP, de Jong M. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging. 2006;33:1214–7.CrossRef Forrer F, Valkema R, Bernard B, Schramm NU, Hoppin JW, Rolleman E, Krenning EP, de Jong M. In vivo radionuclide uptake quantification using a multi-pinhole SPECT system to predict renal function in small animals. Eur J Nucl Med Mol Imaging. 2006;33:1214–7.CrossRef
8.
go back to reference Kesner AL, Hsueh WA, Czernin J, Padgett H, Phelps ME, Silverman DH. Radiation dose estimates for [18F]5-fluorouracil derived from PET-based and tissue-based methods in rats. Mol Imaging Biol. 2008;10:341–8.CrossRef Kesner AL, Hsueh WA, Czernin J, Padgett H, Phelps ME, Silverman DH. Radiation dose estimates for [18F]5-fluorouracil derived from PET-based and tissue-based methods in rats. Mol Imaging Biol. 2008;10:341–8.CrossRef
9.
go back to reference Finucane CM, Murray I, Sosabowski JK, Foster JM, Mather SJ. Quantitative accuracy of low-count SPECT imaging in phantom and in vivo mouse studies. Int J Mol Imaging. 2011;2011:197381.CrossRef Finucane CM, Murray I, Sosabowski JK, Foster JM, Mather SJ. Quantitative accuracy of low-count SPECT imaging in phantom and in vivo mouse studies. Int J Mol Imaging. 2011;2011:197381.CrossRef
10.
go back to reference Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, van der Walt NT, Türler A, Schibli R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.CrossRef Müller C, Zhernosekov K, Köster U, Johnston K, Dorrer H, Hohn A, van der Walt NT, Türler A, Schibli R. A unique matched quadruplet of terbium radioisotopes for PET and SPECT and for α- and β-radionuclide therapy: an in vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl Med. 2012;53:1951–9.CrossRef
11.
go back to reference Müller C, Vermeulen C, Johnston K, Köster U, Schmid R, Türler A, van der Meulen NP. Preclinical in vivo application of 152Tb-DOTANOC: a radiolanthanide for PET imaging. EJNMMI Res. 2016;6:35.CrossRef Müller C, Vermeulen C, Johnston K, Köster U, Schmid R, Türler A, van der Meulen NP. Preclinical in vivo application of 152Tb-DOTANOC: a radiolanthanide for PET imaging. EJNMMI Res. 2016;6:35.CrossRef
12.
go back to reference Baum RP, Singh A, Benešová M, Vermeulen C, Gnesin S, Köster U, Johnston K, Müller D, Senftleben S, Kulkarni HR, Türler A, Schibli R, Prior JO, van der Meulen NP, Müller C. Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with 152Tb-DOTATOC. Dalton Trans. 2017;46:14638–46.CrossRef Baum RP, Singh A, Benešová M, Vermeulen C, Gnesin S, Köster U, Johnston K, Müller D, Senftleben S, Kulkarni HR, Türler A, Schibli R, Prior JO, van der Meulen NP, Müller C. Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with 152Tb-DOTATOC. Dalton Trans. 2017;46:14638–46.CrossRef
13.
go back to reference Allen BJ, Goozee G, Sarkar S, Beyer G, Morel C, Byrne AP. Production of terbium-152 by heavy ion reactions and proton induced spallation. Appl Radiat Isot. 2001;54:53–8.CrossRef Allen BJ, Goozee G, Sarkar S, Beyer G, Morel C, Byrne AP. Production of terbium-152 by heavy ion reactions and proton induced spallation. Appl Radiat Isot. 2001;54:53–8.CrossRef
14.
go back to reference Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U, Schibli R, Türler A, Zhernosekov K. The low-energy β(−) and electron emitter (161) Tb as an alternative to (177) Lu for targeted radionuclide therapy. Nucl Med Biol. 2011;38:917–24.CrossRef Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U, Schibli R, Türler A, Zhernosekov K. The low-energy β(−) and electron emitter (161) Tb as an alternative to (177) Lu for targeted radionuclide therapy. Nucl Med Biol. 2011;38:917–24.CrossRef
15.
go back to reference Li C, Wang J, Hu J, Feng Y, Hasegawa K, Peng X, Duan X, Zhao A, Mikitsh JL, Muzykantov VR, Chacko AM, Pryma DA, Dunn SM, Coukos G. Development, optimization, and validation of novel anti-TEM1/CD248 affinity agent for optical imaging in cancer. Oncotarget. 2014;5:6994–7012.PubMedPubMedCentral Li C, Wang J, Hu J, Feng Y, Hasegawa K, Peng X, Duan X, Zhao A, Mikitsh JL, Muzykantov VR, Chacko AM, Pryma DA, Dunn SM, Coukos G. Development, optimization, and validation of novel anti-TEM1/CD248 affinity agent for optical imaging in cancer. Oncotarget. 2014;5:6994–7012.PubMedPubMedCentral
16.
go back to reference Sánchez F, Orero A, Soriano A, Correcher C, Conde P, González A, Hernández L, Moliner L, Rodríguez-Alvarez MJ, Vidal LF, Benlloch JM, Chapman SE, Leevy WM. ALBIRA: a small animal PET∕SPECT∕CT imaging system. Med Phys. 2013;40:051906.CrossRef Sánchez F, Orero A, Soriano A, Correcher C, Conde P, González A, Hernández L, Moliner L, Rodríguez-Alvarez MJ, Vidal LF, Benlloch JM, Chapman SE, Leevy WM. ALBIRA: a small animal PET∕SPECT∕CT imaging system. Med Phys. 2013;40:051906.CrossRef
17.
go back to reference Menzel HG, Clement C, DeLuca P. ICRP publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 2009;39:1–164.PubMed Menzel HG, Clement C, DeLuca P. ICRP publication 110. Realistic reference phantoms: an ICRP/ICRU joint effort. A report of adult reference computational phantoms. Ann ICRP. 2009;39:1–164.PubMed
18.
go back to reference Amato E, Lizio D, Baldari S. Absorbed fractions in ellipsoidal volumes for beta(−) radionuclides employed in internal radiotherapy. Phys Med Biol. 2009;54:4171–80.CrossRef Amato E, Lizio D, Baldari S. Absorbed fractions in ellipsoidal volumes for beta(−) radionuclides employed in internal radiotherapy. Phys Med Biol. 2009;54:4171–80.CrossRef
19.
go back to reference Amato E, Lizio D, Baldari S. Absorbed fractions for photons in ellipsoidal volumes. Phys Med Biol. 2009;54:N479–87.CrossRef Amato E, Lizio D, Baldari S. Absorbed fractions for photons in ellipsoidal volumes. Phys Med Biol. 2009;54:N479–87.CrossRef
20.
go back to reference Amato E, Lizio D, Baldari S. Absorbed fractions for electrons in ellipsoidal volumes. Phys Med Biol. 2011;56:357–65.CrossRef Amato E, Lizio D, Baldari S. Absorbed fractions for electrons in ellipsoidal volumes. Phys Med Biol. 2011;56:357–65.CrossRef
21.
go back to reference Martin MJ. Nuclear data sheets for a = 152. Nucl Data Sheets. 2013;114:1497–847.CrossRef Martin MJ. Nuclear data sheets for a = 152. Nucl Data Sheets. 2013;114:1497–847.CrossRef
22.
go back to reference Bretin F, Mauxion T, Warnock G, Bahri MA, Libert L, Lemaire C, Luxen A, Bardiès M, Seret A, Plenevaux A. Hybrid microPET imaging for dosimetric applications in mice: improvement of activity quantification in dynamic microPET imaging for accelerated dosimetry applied to 6-[18F]fluoro-L-DOPA and 2-[18F]fluoro-L-tyrosine. Mol Imaging Biol. 2014;16:383–94.CrossRef Bretin F, Mauxion T, Warnock G, Bahri MA, Libert L, Lemaire C, Luxen A, Bardiès M, Seret A, Plenevaux A. Hybrid microPET imaging for dosimetric applications in mice: improvement of activity quantification in dynamic microPET imaging for accelerated dosimetry applied to 6-[18F]fluoro-L-DOPA and 2-[18F]fluoro-L-tyrosine. Mol Imaging Biol. 2014;16:383–94.CrossRef
23.
go back to reference Denis-Bacelar AM, Cronin SE, Da Pieve C, Paul RL, Eccles SA, Spinks TJ, Box C, Hall A, Sosabowski JK, Kramer-Marek G, Flux GD. Pre-clinical quantitative imaging and mouse-specific dosimetry for 111In-labelled radiotracers. EJNMMI Res. 2016;6:85.CrossRef Denis-Bacelar AM, Cronin SE, Da Pieve C, Paul RL, Eccles SA, Spinks TJ, Box C, Hall A, Sosabowski JK, Kramer-Marek G, Flux GD. Pre-clinical quantitative imaging and mouse-specific dosimetry for 111In-labelled radiotracers. EJNMMI Res. 2016;6:85.CrossRef
24.
go back to reference Viertl D, Buchegger F, Prior JO, Forni M, Morel P, Ratib O, Bühler Léo H, Stora T. CERN-MEDICIS (medical isotopes collected from ISOLDE): a new facility. Rev Med Suisse. 2015;11:1340–4 Article in French.PubMed Viertl D, Buchegger F, Prior JO, Forni M, Morel P, Ratib O, Bühler Léo H, Stora T. CERN-MEDICIS (medical isotopes collected from ISOLDE): a new facility. Rev Med Suisse. 2015;11:1340–4 Article in French.PubMed
25.
go back to reference Yuan X, Yang M, Chen X, Zhang X, Sukhadia S, Musolino N, Bao H, Chen T, Xu C, Wang Q, Santoro S, Ricklin D, Hu J, Lin R, Yang W, Li Z, Qin W, Zhao A, Scholler N, Coukos G. Correction to: Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunol Immunother. 2018;67:329–39.CrossRef Yuan X, Yang M, Chen X, Zhang X, Sukhadia S, Musolino N, Bao H, Chen T, Xu C, Wang Q, Santoro S, Ricklin D, Hu J, Lin R, Yang W, Li Z, Qin W, Zhao A, Scholler N, Coukos G. Correction to: Characterization of the first fully human anti-TEM1 scFv in models of solid tumor imaging and immunotoxin-based therapy. Cancer Immunol Immunother. 2018;67:329–39.CrossRef
26.
go back to reference Guo Y, Hu J, Wang Y, Peng X, Min J, Wang J, Matthaiou E, Cheng Y, Sun K, Tong X, Fan Y, Zhang PJ, Kandalaft LE, Irving M, Coukos G, Li C. Tumour endothelial marker 1/endosialin-mediated targeting of human sarcoma. Eur J Cancer. 2018;90:111–21.CrossRef Guo Y, Hu J, Wang Y, Peng X, Min J, Wang J, Matthaiou E, Cheng Y, Sun K, Tong X, Fan Y, Zhang PJ, Kandalaft LE, Irving M, Coukos G, Li C. Tumour endothelial marker 1/endosialin-mediated targeting of human sarcoma. Eur J Cancer. 2018;90:111–21.CrossRef
28.
go back to reference Amato E, Italiano A, Baldari S. An analytical model to calculate absorbed fractions for internal dosimetry with alpha, beta and gamma emitters. In: Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, vol. 92; 2014. p. A1. https://doi.org/10.1478/AAPP.921A1. Amato E, Italiano A, Baldari S. An analytical model to calculate absorbed fractions for internal dosimetry with alpha, beta and gamma emitters. In: Atti della Accademia Peloritana dei Pericolanti-Classe di Scienze Fisiche, Matematiche e Naturali, vol. 92; 2014. p. A1. https://​doi.​org/​10.​1478/​AAPP.​921A1.
Metadata
Title
Internal radiation dosimetry of a 152Tb-labeled antibody in tumor-bearing mice
Authors
Francesco Cicone
Silvano Gnesin
Thibaut Denoël
Thierry Stora
Nicholas P. van der Meulen
Cristina Müller
Christiaan Vermeulen
Martina Benešová
Ulli Köster
Karl Johnston
Ernesto Amato
Lucrezia Auditore
George Coukos
Michael Stabin
Niklaus Schaefer
David Viertl
John O. Prior
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2019
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-019-0524-7

Other articles of this Issue 1/2019

EJNMMI Research 1/2019 Go to the issue