Skip to main content
Top
Published in: BMC Surgery 1/2022

Open Access 01-12-2022 | Computed Tomography | Research

Incidence of upper extremity deep vein thrombosis in the retrosternal reconstruction after esophagectomy

Authors: Leo Yamada, Motonobu Saito, Hiroya Suzuki, Shotaro Mochizuki, Eisei Endo, Koji Kase, Misato Ito, Hiroshi Nakano, Naoto Yamauchi, Takuro Matsumoto, Akinao Kaneta, Yasuyuki Kanke, Hisashi Onozawa, Hiroyuki Hanayama, Hirokazu Okayama, Shotaro Fujita, Wataru Sakamoto, Yohei Watanabe, Suguru Hayase, Zenichiro Saze, Tomoyuki Momma, Shinji Ohki, Koji Kono

Published in: BMC Surgery | Issue 1/2022

Login to get access

Abstract

Background

Upper extremity deep vein thrombosis (UEDVT) is relatively rare but cannot be negligible because it can cause fatal complications. Although it is reported that the occurrence rate of UEDVT has increased due to central venous catheter (CVC), cancer, and surgical invasion, there is still limited information for esophagectomy. The aim of this study was to evaluate the clinical factors, including CVC placement and thromboprophylaxis approach, as well as retrosternal space’s width as a predictive factor for UEDVT in patients receiving esophagectomy.

Methods

This study included 66 patients who underwent esophagectomy with retrosternal reconstruction using a gastric tube. All patients routinely underwent contrast-enhanced computed tomography (CT) on the 4th postoperative day. Low-molecular-weight-heparin (LMWH) was routinely administered by the 2nd postoperative day. To evaluate retrosternal space’s width, (a) The distance from sternum to brachiocephalic artery and (b) the distance from sternum to vertebra were measured by preoperative CT, and the ratio of (a) to (b) was defined as the width of retrosternal space.

Results

Among all patients, 11 (16.7%) suffered from UEDVT, and none was preoperatively received CVC placement, while 7 were inserted in non-UEDVT cases. Retrosternal space’s width in patients with UEDVT was significantly smaller than that in patients without UEDVT (0.17 vs. 0.26; P < 0.0001). A cutoff value of the width was 0.21, which has high sensitivity (87%) and specificity (82%) for UEDVT prediction, respectively.

Conclusion

The existence of CVC may not affect the development of UEDVT, but preoperative evaluation of retrosternal ratio may predict the occurrence of UEDVT.
Literature
1.
go back to reference Pasquali S, Yim G, Vohra RS, et al. Survival after neoadjuvant and adjuvant treatments compared to surgery alone for resectable esophageal carcinoma: a network meta-analysis. Ann Surg. 2017;265(3):481–91.CrossRef Pasquali S, Yim G, Vohra RS, et al. Survival after neoadjuvant and adjuvant treatments compared to surgery alone for resectable esophageal carcinoma: a network meta-analysis. Ann Surg. 2017;265(3):481–91.CrossRef
2.
go back to reference Ohkura Y, Miyata H, Konno H, et al. Development of a model predicting the risk of eight major postoperative complications after esophagectomy based on 10 826 cases in the Japan National Clinical Database. J Surg Oncol. 2019;121:313.CrossRef Ohkura Y, Miyata H, Konno H, et al. Development of a model predicting the risk of eight major postoperative complications after esophagectomy based on 10 826 cases in the Japan National Clinical Database. J Surg Oncol. 2019;121:313.CrossRef
3.
go back to reference Siaw-Acheampong K, Kamarajah SK, Gujjuri R, et al. Minimally invasive techniques for transthoracic oesophagectomy for oesophageal cancer: systematic review and network meta-analysis. BJS Open. 2020;4(5):787–803.CrossRef Siaw-Acheampong K, Kamarajah SK, Gujjuri R, et al. Minimally invasive techniques for transthoracic oesophagectomy for oesophageal cancer: systematic review and network meta-analysis. BJS Open. 2020;4(5):787–803.CrossRef
4.
go back to reference Morita M, Nakanoko T, Fujinaka Y, et al. In-hospital mortality after a surgical resection for esophageal cancer: analyses of the associated factors and historical changes. Ann Surg Oncol. 2011;18(6):1757–65.CrossRef Morita M, Nakanoko T, Fujinaka Y, et al. In-hospital mortality after a surgical resection for esophageal cancer: analyses of the associated factors and historical changes. Ann Surg Oncol. 2011;18(6):1757–65.CrossRef
5.
go back to reference Martin JT, Mahan AL, Ferraris VA, et al. Identifying esophagectomy patients at risk for predischarge versus postdischarge venous thromboembolism. Ann Thorac Surg. 2015;100(3):932–8.CrossRef Martin JT, Mahan AL, Ferraris VA, et al. Identifying esophagectomy patients at risk for predischarge versus postdischarge venous thromboembolism. Ann Thorac Surg. 2015;100(3):932–8.CrossRef
6.
go back to reference De Martino RR, Goodney PP, Spangler EL, et al. Variation in thromboembolic complications among patients undergoing commonly performed cancer operations. J Vasc Surg. 2012;55(4):1035-40.e4.CrossRef De Martino RR, Goodney PP, Spangler EL, et al. Variation in thromboembolic complications among patients undergoing commonly performed cancer operations. J Vasc Surg. 2012;55(4):1035-40.e4.CrossRef
7.
go back to reference Kucher N. Deep-vein thrombosis of the upper extremities. N Engl J Med. 2011;364(9):861–9.CrossRef Kucher N. Deep-vein thrombosis of the upper extremities. N Engl J Med. 2011;364(9):861–9.CrossRef
8.
go back to reference Carlon TA, Sudheendra D. Interventional Therapy for upper extremity deep vein thrombosis. Semin Intervent Radiol. 2017;34(1):54–60.CrossRef Carlon TA, Sudheendra D. Interventional Therapy for upper extremity deep vein thrombosis. Semin Intervent Radiol. 2017;34(1):54–60.CrossRef
9.
go back to reference Ploton G, Pistorius MA, Raimbeau A, et al. A STROBE cohort study of 755 deep and superficial upper-extremity vein thrombosis. Medicine (Baltimore). 2020;99(6):e18996.CrossRef Ploton G, Pistorius MA, Raimbeau A, et al. A STROBE cohort study of 755 deep and superficial upper-extremity vein thrombosis. Medicine (Baltimore). 2020;99(6):e18996.CrossRef
10.
go back to reference Sartori M, Migliaccio L, Favaretto E, et al. D-dimer for the diagnosis of upper extremity deep and superficial venous thrombosis. Thromb Res. 2015;135(4):673–8.CrossRef Sartori M, Migliaccio L, Favaretto E, et al. D-dimer for the diagnosis of upper extremity deep and superficial venous thrombosis. Thromb Res. 2015;135(4):673–8.CrossRef
11.
go back to reference Takahashi T, Fukaya M, Miyata K, et al. Retrosternal reconstruction can be a risk factor for upper extremity deep vein thrombosis after esophagectomy. World J Surg. 2017;41(12):3154–63.CrossRef Takahashi T, Fukaya M, Miyata K, et al. Retrosternal reconstruction can be a risk factor for upper extremity deep vein thrombosis after esophagectomy. World J Surg. 2017;41(12):3154–63.CrossRef
12.
go back to reference Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. New York: Wiley; 2017. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. New York: Wiley; 2017.
13.
go back to reference Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250(2):187–96.CrossRef Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250(2):187–96.CrossRef
14.
go back to reference Anderson DR, Morgano GP, Bennett C, et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019;3(23):3898–944.CrossRef Anderson DR, Morgano GP, Bennett C, et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019;3(23):3898–944.CrossRef
15.
go back to reference Mino JS, Gutnick JR, Monteiro R, et al. Line-associated thrombosis as the major cause of hospital-acquired deep vein thromboses: an analysis from National Surgical Quality Improvement Program data and a call to reassess prophylaxis strategies. Am J Surg. 2014;208(1):45–9.CrossRef Mino JS, Gutnick JR, Monteiro R, et al. Line-associated thrombosis as the major cause of hospital-acquired deep vein thromboses: an analysis from National Surgical Quality Improvement Program data and a call to reassess prophylaxis strategies. Am J Surg. 2014;208(1):45–9.CrossRef
16.
go back to reference Aziz S, Straehley CJ, Whelan TJ, et al. Effort-related axillosubclavian vein thrombosis. A new theory of pathogenesis and a plea for direct surgical intervention. Am J Surg. 1986;152(1):57–61.CrossRef Aziz S, Straehley CJ, Whelan TJ, et al. Effort-related axillosubclavian vein thrombosis. A new theory of pathogenesis and a plea for direct surgical intervention. Am J Surg. 1986;152(1):57–61.CrossRef
17.
go back to reference Blom JW, Doggen CJ, Osanto S, et al. Old and new risk factors for upper extremity deep venous thrombosis. J Thromb Haemost. 2005;3(11):2471–8.CrossRef Blom JW, Doggen CJ, Osanto S, et al. Old and new risk factors for upper extremity deep venous thrombosis. J Thromb Haemost. 2005;3(11):2471–8.CrossRef
18.
go back to reference Joffe HV, Goldhaber SZ. Upper-extremity deep vein thrombosis. Circulation. 2002;106(14):1874–80.CrossRef Joffe HV, Goldhaber SZ. Upper-extremity deep vein thrombosis. Circulation. 2002;106(14):1874–80.CrossRef
19.
go back to reference Watanabe M, Tachimori Y, Oyama T, et al. Comprehensive registry of esophageal cancer in Japan, 2013. Esophagus. 2021;18(1):1–24.CrossRef Watanabe M, Tachimori Y, Oyama T, et al. Comprehensive registry of esophageal cancer in Japan, 2013. Esophagus. 2021;18(1):1–24.CrossRef
20.
go back to reference Athanasiou A, Hennessy M, Spartalis E, et al. Conduit necrosis following esophagectomy: an up-to-date literature review. World J Gastrointest Surg. 2019;11(3):155–68.CrossRef Athanasiou A, Hennessy M, Spartalis E, et al. Conduit necrosis following esophagectomy: an up-to-date literature review. World J Gastrointest Surg. 2019;11(3):155–68.CrossRef
21.
go back to reference Mai C, Hunt D. Upper-extremity deep venous thrombosis: a review. Am J Med. 2011;124(5):402–7.CrossRef Mai C, Hunt D. Upper-extremity deep venous thrombosis: a review. Am J Med. 2011;124(5):402–7.CrossRef
22.
go back to reference Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e419S – e496.CrossRef Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e419S – e496.CrossRef
23.
go back to reference Stacy ZA, Call WB, Hartmann AP, et al. Edoxaban: a comprehensive review of the pharmacology and clinical data for the management of atrial fibrillation and venous thromboembolism. Cardiol Ther. 2016;5(1):1–18.CrossRef Stacy ZA, Call WB, Hartmann AP, et al. Edoxaban: a comprehensive review of the pharmacology and clinical data for the management of atrial fibrillation and venous thromboembolism. Cardiol Ther. 2016;5(1):1–18.CrossRef
24.
go back to reference Hingorani A, Ascher E, Markevich N, et al. Risk factors for mortality in patients with upper extremity and internal jugular deep venous thrombosis. J Vasc Surg. 2005;41(3):476–8.CrossRef Hingorani A, Ascher E, Markevich N, et al. Risk factors for mortality in patients with upper extremity and internal jugular deep venous thrombosis. J Vasc Surg. 2005;41(3):476–8.CrossRef
25.
go back to reference Levy MM, Albuquerque F, Pfeifer JD. Low incidence of pulmonary embolism associated with upper-extremity deep venous thrombosis. Ann Vasc Surg. 2012;26(7):964–72.CrossRef Levy MM, Albuquerque F, Pfeifer JD. Low incidence of pulmonary embolism associated with upper-extremity deep venous thrombosis. Ann Vasc Surg. 2012;26(7):964–72.CrossRef
26.
go back to reference Di Nisio M, Van Sluis GL, Bossuyt PM, et al. Accuracy of diagnostic tests for clinically suspected upper extremity deep vein thrombosis: a systematic review. J Thromb Haemost. 2010;8(4):684–92.CrossRef Di Nisio M, Van Sluis GL, Bossuyt PM, et al. Accuracy of diagnostic tests for clinically suspected upper extremity deep vein thrombosis: a systematic review. J Thromb Haemost. 2010;8(4):684–92.CrossRef
27.
go back to reference Constans J, Salmi LR, Sevestre-Pietri MA, et al. A clinical prediction score for upper extremity deep venous thrombosis. Thromb Haemost. 2008;99(1):202–7.CrossRef Constans J, Salmi LR, Sevestre-Pietri MA, et al. A clinical prediction score for upper extremity deep venous thrombosis. Thromb Haemost. 2008;99(1):202–7.CrossRef
28.
go back to reference Merminod T, Pellicciotta S, Bounameaux H. Limited usefulness of D-dimer in suspected deep vein thrombosis of the upper extremities. Blood Coagul Fibrinolysis. 2006;17(3):225–6.CrossRef Merminod T, Pellicciotta S, Bounameaux H. Limited usefulness of D-dimer in suspected deep vein thrombosis of the upper extremities. Blood Coagul Fibrinolysis. 2006;17(3):225–6.CrossRef
Metadata
Title
Incidence of upper extremity deep vein thrombosis in the retrosternal reconstruction after esophagectomy
Authors
Leo Yamada
Motonobu Saito
Hiroya Suzuki
Shotaro Mochizuki
Eisei Endo
Koji Kase
Misato Ito
Hiroshi Nakano
Naoto Yamauchi
Takuro Matsumoto
Akinao Kaneta
Yasuyuki Kanke
Hisashi Onozawa
Hiroyuki Hanayama
Hirokazu Okayama
Shotaro Fujita
Wataru Sakamoto
Yohei Watanabe
Suguru Hayase
Zenichiro Saze
Tomoyuki Momma
Shinji Ohki
Koji Kono
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Surgery / Issue 1/2022
Electronic ISSN: 1471-2482
DOI
https://doi.org/10.1186/s12893-022-01544-9

Other articles of this Issue 1/2022

BMC Surgery 1/2022 Go to the issue