Skip to main content
Top
Published in: Cancer Imaging 1/2024

Open Access 01-12-2024 | Computed Tomography | Research article

Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT

Authors: L. D’hondt, C. Franck, P-J. Kellens, F. Zanca, D. Buytaert, A. Van Hoyweghen, H. El Addouli, K. Carpentier, M. Niekel, M. Spinhoven, K. Bacher, A. Snoeckx

Published in: Cancer Imaging | Issue 1/2024

Login to get access

Abstract

Background

This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable.

Materials and methods

A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models.

Results

Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR.

Conclusion

We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
go back to reference de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Eng J Med. 2020;382(6):503–13.CrossRef de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Eng J Med. 2020;382(6):503–13.CrossRef
3.
go back to reference Zhao YR, Xie X, de Koning HJ, Mali WP, Vliegenthart R, Oudkerk M. NELSON lung cancer screening study. Cancer Imaging. 2011;11(1A):S79.CrossRefPubMedCentral Zhao YR, Xie X, de Koning HJ, Mali WP, Vliegenthart R, Oudkerk M. NELSON lung cancer screening study. Cancer Imaging. 2011;11(1A):S79.CrossRefPubMedCentral
4.
go back to reference Team NLSTR. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Eng J Med. 2011;365(5):395–409.CrossRef Team NLSTR. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Eng J Med. 2011;365(5):395–409.CrossRef
5.
go back to reference Kauczor H-U, Baird A-M, Blum TG, Bonomo L, Bostantzoglou C, Burghuber O, et al. ESR/ERS statement paper on lung cancer screening. Eur Radiol. 2020;30(6):3277–94.CrossRefPubMed Kauczor H-U, Baird A-M, Blum TG, Bonomo L, Bostantzoglou C, Burghuber O, et al. ESR/ERS statement paper on lung cancer screening. Eur Radiol. 2020;30(6):3277–94.CrossRefPubMed
6.
go back to reference Paci E, Puliti D, Pegna AL, Carrozzi L, Picozzi G, Falaschi F, et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax. 2017;72(9):825–31.CrossRefPubMed Paci E, Puliti D, Pegna AL, Carrozzi L, Picozzi G, Falaschi F, et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax. 2017;72(9):825–31.CrossRefPubMed
7.
go back to reference Infante M, Sestini S, Galeone C, Marchianò A, Lutman FR, Angeli E, et al. Lung cancer screening with low-dose spiral computed tomography: evidence from a pooled analysis of two Italian randomized trials. Eur J Cancer Prev. 2017;26(4):324.CrossRefPubMedPubMedCentral Infante M, Sestini S, Galeone C, Marchianò A, Lutman FR, Angeli E, et al. Lung cancer screening with low-dose spiral computed tomography: evidence from a pooled analysis of two Italian randomized trials. Eur J Cancer Prev. 2017;26(4):324.CrossRefPubMedPubMedCentral
8.
go back to reference Pastorino U, Rossi M, Rosato V, Marchiano A, Sverzellati N, Morosi C, et al. Annual or biennial CT screening versus observation in heavy smokers. Eur J Cancer Prev. 2012;21(3):308–15.CrossRefPubMed Pastorino U, Rossi M, Rosato V, Marchiano A, Sverzellati N, Morosi C, et al. Annual or biennial CT screening versus observation in heavy smokers. Eur J Cancer Prev. 2012;21(3):308–15.CrossRefPubMed
9.
go back to reference Baldwin D, Duffy S, Wald N, Page R, Hansell D, Field J. UK Lung Screen (UKLS) nodule management protocol: modelling of a single screen randomised controlled trial of low-dose CT screening for lung cancer. Thorax. 2011;66(4):308–13.CrossRefPubMed Baldwin D, Duffy S, Wald N, Page R, Hansell D, Field J. UK Lung Screen (UKLS) nodule management protocol: modelling of a single screen randomised controlled trial of low-dose CT screening for lung cancer. Thorax. 2011;66(4):308–13.CrossRefPubMed
10.
go back to reference Zhang M, Qi W, Sun Y, Jiang Y, Liu X, Hong N. Screening for lung cancer using sub-millisievert chest cT with iterative reconstruction algorithm: Image quality and nodule detectability. Brit J Radiol. 2018;91(1090):20170658.CrossRefPubMed Zhang M, Qi W, Sun Y, Jiang Y, Liu X, Hong N. Screening for lung cancer using sub-millisievert chest cT with iterative reconstruction algorithm: Image quality and nodule detectability. Brit J Radiol. 2018;91(1090):20170658.CrossRefPubMed
11.
go back to reference Goto M, Nagayama Y, Sakabe D, Emoto T, Kidoh M, Oda S, et al. Lung-optimized deep-learning-based reconstruction for ultralow-dose CT. Acad Radiol. 2023;30(3):431–40.CrossRefPubMed Goto M, Nagayama Y, Sakabe D, Emoto T, Kidoh M, Oda S, et al. Lung-optimized deep-learning-based reconstruction for ultralow-dose CT. Acad Radiol. 2023;30(3):431–40.CrossRefPubMed
12.
go back to reference McLeavy C, Chunara M, Gravell R, Rauf A, Cushnie A, Talbot CS, et al. The future of CT: deep learning reconstruction. Clin Radiol. 2021;76(6):407–15.CrossRefPubMed McLeavy C, Chunara M, Gravell R, Rauf A, Cushnie A, Talbot CS, et al. The future of CT: deep learning reconstruction. Clin Radiol. 2021;76(6):407–15.CrossRefPubMed
13.
go back to reference Pontino SP. State of the Art: Iterative CT Reconstruction Techniques. Radiology. 2015;276. Pontino SP. State of the Art: Iterative CT Reconstruction Techniques. Radiology. 2015;276.
14.
go back to reference Willemink MJ, Noël PB. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence. Eur Radiol. 2019;29:2185–95.CrossRefPubMed Willemink MJ, Noël PB. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence. Eur Radiol. 2019;29:2185–95.CrossRefPubMed
15.
go back to reference Franck C, Zhang G, Deak P, Zanca F. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: a phantom study. Physica Medica. 2021;81:86–93.CrossRefPubMed Franck C, Zhang G, Deak P, Zanca F. Preserving image texture while reducing radiation dose with a deep learning image reconstruction algorithm in chest CT: a phantom study. Physica Medica. 2021;81:86–93.CrossRefPubMed
16.
go back to reference Tanenbaum LN. Artificial intelligence and medical imaging: image acquisition and reconstruction. Appl Radiol. 2020;49(3):34–5.CrossRef Tanenbaum LN. Artificial intelligence and medical imaging: image acquisition and reconstruction. Appl Radiol. 2020;49(3):34–5.CrossRef
17.
go back to reference Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol. 2020;30(7):3951–9.CrossRefPubMed Greffier J, Hamard A, Pereira F, Barrau C, Pasquier H, Beregi JP, et al. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol. 2020;30(7):3951–9.CrossRefPubMed
18.
go back to reference Kim H, Park CM, Song YS, Lee SM, Goo JM. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: a phantom study. Eur J Radiol. 2014;83(5):848–57.CrossRefPubMed Kim H, Park CM, Song YS, Lee SM, Goo JM. Influence of radiation dose and iterative reconstruction algorithms for measurement accuracy and reproducibility of pulmonary nodule volumetry: a phantom study. Eur J Radiol. 2014;83(5):848–57.CrossRefPubMed
19.
go back to reference Arndt C, Güttler F, Heinrich A, et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr. 2021;193:252–61. Arndt C, Güttler F, Heinrich A, et al. Deep Learning CT Image Reconstruction in Clinical Practice. Fortschr Röntgenstr. 2021;193:252–61.
20.
go back to reference Jiang B, Li N, Shi X, Zhang S, Li J, de Bock GH, et al. Deep learning reconstruction shows better lung nodule detection for ultra–low-dose chest CT. Radiology. 2022;303(1):202–12.CrossRefPubMed Jiang B, Li N, Shi X, Zhang S, Li J, de Bock GH, et al. Deep learning reconstruction shows better lung nodule detection for ultra–low-dose chest CT. Radiology. 2022;303(1):202–12.CrossRefPubMed
21.
go back to reference Franck C, Snoeckx A, Spinhoven M, El Addouli H, Nicolay S, Van Hoyweghen A, et al. Pulmonary nodule detection in chest Ct using a deep learning-based reconstruction algorithm. Radiat Prot Dosimetry. 2021;195(3–4):158–63.CrossRefPubMed Franck C, Snoeckx A, Spinhoven M, El Addouli H, Nicolay S, Van Hoyweghen A, et al. Pulmonary nodule detection in chest Ct using a deep learning-based reconstruction algorithm. Radiat Prot Dosimetry. 2021;195(3–4):158–63.CrossRefPubMed
22.
go back to reference Racine D, Brat H, Dufour B, Steity J, Hussenot M, Rizk B, et al. Image texture, low contrast liver lesion detectability and impact on dose: Deep learning algorithm compared to partial model-based iterative reconstruction. Eur J Radiol. 2021;141: 109808.CrossRefPubMed Racine D, Brat H, Dufour B, Steity J, Hussenot M, Rizk B, et al. Image texture, low contrast liver lesion detectability and impact on dose: Deep learning algorithm compared to partial model-based iterative reconstruction. Eur J Radiol. 2021;141: 109808.CrossRefPubMed
23.
go back to reference Snoeckx A, Reyntiens P, Desbuquoit D, Spinhoven MJ, Van Schil PE, van Meerbeeck JP, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018;9(1):73–86.CrossRefPubMed Snoeckx A, Reyntiens P, Desbuquoit D, Spinhoven MJ, Van Schil PE, van Meerbeeck JP, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018;9(1):73–86.CrossRefPubMed
24.
go back to reference Sartorio C, Milanese G, Ledda RE, Tringali G, Balbi M, Milone F, et al. iameter versus volumetry: a narrative review on current recommendations to measure and monitor screening detected lung nodules. Growth. 2021;35:37. Sartorio C, Milanese G, Ledda RE, Tringali G, Balbi M, Milone F, et al. iameter versus volumetry: a narrative review on current recommendations to measure and monitor screening detected lung nodules. Growth. 2021;35:37.
25.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.
26.
go back to reference Nair A, Dyer DS, Heuvelmans MA, Mashar M, Silva M, Hammer MM. Contextualizing the role of volumetric analysis in pulmonary nodule assessment: AJR expert panel narrative review. Am J Roentgenol. 2023;220(3):314–29.CrossRef Nair A, Dyer DS, Heuvelmans MA, Mashar M, Silva M, Hammer MM. Contextualizing the role of volumetric analysis in pulmonary nodule assessment: AJR expert panel narrative review. Am J Roentgenol. 2023;220(3):314–29.CrossRef
27.
go back to reference Baldwin DR, Callister ME. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax. 2015;70(8):794–8.CrossRefPubMed Baldwin DR, Callister ME. The British Thoracic Society guidelines on the investigation and management of pulmonary nodules. Thorax. 2015;70(8):794–8.CrossRefPubMed
28.
go back to reference Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18(12):e754–66.CrossRefPubMed Oudkerk M, Devaraj A, Vliegenthart R, Henzler T, Prosch H, Heussel CP, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18(12):e754–66.CrossRefPubMed
29.
go back to reference Higaki T, Nakamura Y, Zhou J, Yu Z, Nemoto T, Tatsugami F, et al. Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol. 2020;27(1):82–7.CrossRefPubMed Higaki T, Nakamura Y, Zhou J, Yu Z, Nemoto T, Tatsugami F, et al. Deep learning reconstruction at CT: phantom study of the image characteristics. Acad Radiol. 2020;27(1):82–7.CrossRefPubMed
30.
go back to reference Hata A, Yanagawa M, Yoshida Y, Miyata T, Kikuchi N, Honda O, et al. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Clin Radiol. 2021;76(2):e15–23.CrossRef Hata A, Yanagawa M, Yoshida Y, Miyata T, Kikuchi N, Honda O, et al. The image quality of deep-learning image reconstruction of chest CT images on a mediastinal window setting. Clin Radiol. 2021;76(2):e15–23.CrossRef
31.
go back to reference Kim JH, Yoon HJ, Lee E, Kim I, Cha YK, Bak SH. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol. 2021;22(1):131.CrossRefPubMed Kim JH, Yoon HJ, Lee E, Kim I, Cha YK, Bak SH. Validation of deep-learning image reconstruction for low-dose chest computed tomography scan: emphasis on image quality and noise. Korean J Radiol. 2021;22(1):131.CrossRefPubMed
32.
go back to reference Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, et al. Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. Am J Roentgenol. 2020;214(3):566–73.CrossRef Singh R, Digumarthy SR, Muse VV, Kambadakone AR, Blake MA, Tabari A, et al. Image quality and lesion detection on deep learning reconstruction and iterative reconstruction of submillisievert chest and abdominal CT. Am J Roentgenol. 2020;214(3):566–73.CrossRef
34.
go back to reference Hsieh J, Liu E, Nett B, Tang J, Thibault J-B, Sahney S. A new era of image reconstruction: TrueFidelity™. White Paper (JB68676XX), GE Healthcare. 2019. Hsieh J, Liu E, Nett B, Tang J, Thibault J-B, Sahney S. A new era of image reconstruction: TrueFidelity™. White Paper (JB68676XX), GE Healthcare. 2019.
35.
go back to reference Sirohey S. Lung VCAR: a technical description. GE Healthcare Web site, 2005. Citado en. 2007:24. Sirohey S. Lung VCAR: a technical description. GE Healthcare Web site, 2005. Citado en. 2007:24.
36.
go back to reference Team R. RStudio. PBC, Boston 2020. p. RStudio: Integrated Development Environment for R. Team R. RStudio. PBC, Boston 2020. p. RStudio: Integrated Development Environment for R.
37.
go back to reference Team Rc. R. Vienna, Austria 2020. p. R: a language and environment for statistical computing. Team Rc. R. Vienna, Austria 2020. p. R: a language and environment for statistical computing.
38.
39.
go back to reference Motulsky H. GraphPad Software for Windows. 8.0.2 ed. San Diego, California, USA: GraphPad Software. Motulsky H. GraphPad Software for Windows. 8.0.2 ed. San Diego, California, USA: GraphPad Software.
40.
go back to reference Choe J, Lee SM, Do K-H, Lee G, Lee J-G, Lee SM, et al. Deep learning–based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology. 2019;292(2):365–73.CrossRefPubMed Choe J, Lee SM, Do K-H, Lee G, Lee J-G, Lee SM, et al. Deep learning–based image conversion of CT reconstruction kernels improves radiomics reproducibility for pulmonary nodules or masses. Radiology. 2019;292(2):365–73.CrossRefPubMed
41.
go back to reference Fu B, Wang G, Wu M, Li W, Zheng Y, Chu Z, et al. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: A phantom study. Eur J Radiol. 2020;126:108928.CrossRefPubMed Fu B, Wang G, Wu M, Li W, Zheng Y, Chu Z, et al. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: A phantom study. Eur J Radiol. 2020;126:108928.CrossRefPubMed
42.
go back to reference Greffier J, Frandon J, Si-Mohamed S, Dabli D, Hamard A, Belaouni A, et al. Comparison of two deep learning image reconstruction algorithms in chest CT images: a task-based image quality assessment on phantom data. Diagnost Intervent Imaging. 2022;103(1):21–30.CrossRef Greffier J, Frandon J, Si-Mohamed S, Dabli D, Hamard A, Belaouni A, et al. Comparison of two deep learning image reconstruction algorithms in chest CT images: a task-based image quality assessment on phantom data. Diagnost Intervent Imaging. 2022;103(1):21–30.CrossRef
Metadata
Title
Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT
Authors
L. D’hondt
C. Franck
P-J. Kellens
F. Zanca
D. Buytaert
A. Van Hoyweghen
H. El Addouli
K. Carpentier
M. Niekel
M. Spinhoven
K. Bacher
A. Snoeckx
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cancer Imaging / Issue 1/2024
Electronic ISSN: 1470-7330
DOI
https://doi.org/10.1186/s40644-024-00703-w

Other articles of this Issue 1/2024

Cancer Imaging 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine