Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Computed Tomography | Research

3D slicer-based calculation of hematoma irregularity index for predicting hematoma expansion in intracerebral hemorrhage

Authors: Liping Cao, Meng Liu, Mengmeng Wang, Jian Ding, Keshi Mao, Kefeng Liu, Song Li

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

Irregular hematoma is considered as a risk sign of hematoma expansion. The aim of this study was to quantify hematoma irregularity with computed tomography based on 3D Slicer.

Methods

Patients with spontaneous intracerebral hemorrhage who underwent an initial and subsequent non-contrast computed tomography (CT) at a single medical center between January 2019 to January 2020 were retrospectively identified. The Digital Imaging and Communication in Medicine (DICOM) standard images were loaded into the 3D Slicer, and the surface area (S) and volume (V) of hematoma were calculated. The hematoma irregularity index (HII) was defined as \(\frac{\sqrt{S/\pi}}2/\sqrt[3]{3V/4\pi}\times100\). Logistic regression analyses and receiver operating characteristic (ROC) curve analysis were performed to assess predictive performance of HII.

Results

The enrolled patients were divided into those with hematoma enlargement (n = 36) and those without the enlargement (n = 57). HII in hematoma expansion group was 130.4 (125.1–140.0), and the index in non-enlarged hematoma group was 118.6 (113.5-122.3). There was significant difference in HII between the two groups (P < 0.01). Multivariate logistic regression analysis revealed that the HII was significantly associated with hematoma expansion before (odds ratio = 1.203, 95% confidence interval [CI], 1.115–1.298; P < 0.001) and after adjustment for age, hematoma volume, Glasgow Coma Scale score (odds ratio = 1.196, 95% CI, 1.102–1.298, P < 0.001). The area under the ROC curve was 0.86 (CI, 0.78–0.93, P < 0.01), and the best cutoff of HII for predicting hematoma growth was 123.8.

Conclusion

As a quantitative indicator of irregular hematoma, HII can be calculated using the 3D Slicer. And the HII was independently correlated with hematoma expansion.
Literature
1.
go back to reference Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, Vashkevich A, McNamara KA, Valant V, Schwab K, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71(2):158–64.CrossRefPubMedPubMedCentral Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, Vashkevich A, McNamara KA, Valant V, Schwab K, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71(2):158–64.CrossRefPubMedPubMedCentral
2.
go back to reference Zhao W, Wu C, Stone C, Ding Y, Ji X. Treatment of intracerebral hemorrhage: current approaches and future directions. J Neurol Sci. 2020;416:117020.CrossRefPubMed Zhao W, Wu C, Stone C, Ding Y, Ji X. Treatment of intracerebral hemorrhage: current approaches and future directions. J Neurol Sci. 2020;416:117020.CrossRefPubMed
3.
go back to reference Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology. 2011;76(14):1238–44.CrossRefPubMedPubMedCentral Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology. 2011;76(14):1238–44.CrossRefPubMedPubMedCentral
4.
go back to reference Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, Begtrup K, Steiner T. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66(8):1175–81.CrossRefPubMed Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, Mayer SA, Begtrup K, Steiner T. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66(8):1175–81.CrossRefPubMed
5.
go back to reference Li Z, You M, Long C, Bi R, Xu H, He Q, Hu B. Hematoma expansion in Intracerebral Hemorrhage: an update on prediction and treatment. Front Neurol. 2020;11:702.CrossRefPubMedPubMedCentral Li Z, You M, Long C, Bi R, Xu H, He Q, Hu B. Hematoma expansion in Intracerebral Hemorrhage: an update on prediction and treatment. Front Neurol. 2020;11:702.CrossRefPubMedPubMedCentral
6.
go back to reference Xie H, Ma S, Wang X, Zhang X. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol. 2020;30(1):87–98.CrossRefPubMed Xie H, Ma S, Wang X, Zhang X. Noncontrast computer tomography-based radiomics model for predicting intracerebral hemorrhage expansion: preliminary findings and comparison with conventional radiological model. Eur Radiol. 2020;30(1):87–98.CrossRefPubMed
7.
go back to reference Morotti A, Boulouis G, Dowlatshahi D, Li Q, Barras CD, Delcourt C, Yu Z, Zheng J, Zhou Z, Aviv RI, et al. Standards for Detecting, Interpreting, and reporting noncontrast computed tomographic markers of Intracerebral Hemorrhage Expansion. Ann Neurol. 2019;86(4):480–92.CrossRefPubMed Morotti A, Boulouis G, Dowlatshahi D, Li Q, Barras CD, Delcourt C, Yu Z, Zheng J, Zhou Z, Aviv RI, et al. Standards for Detecting, Interpreting, and reporting noncontrast computed tomographic markers of Intracerebral Hemorrhage Expansion. Ann Neurol. 2019;86(4):480–92.CrossRefPubMed
8.
go back to reference Wada R, Aviv RI, Fox AJ, Sahlas DJ, Gladstone DJ, Tomlinson G, Symons SP. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007;38(4):1257–62.CrossRefPubMed Wada R, Aviv RI, Fox AJ, Sahlas DJ, Gladstone DJ, Tomlinson G, Symons SP. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007;38(4):1257–62.CrossRefPubMed
9.
go back to reference Broderick JP, Diringer MN, Hill MD, Brun NC, Mayer SA, Steiner T, Skolnick BE, Davis SM. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke. 2007;38(3):1072–5.CrossRefPubMed Broderick JP, Diringer MN, Hill MD, Brun NC, Mayer SA, Steiner T, Skolnick BE, Davis SM. Determinants of intracerebral hemorrhage growth: an exploratory analysis. Stroke. 2007;38(3):1072–5.CrossRefPubMed
10.
go back to reference Li Q, Zhang G, Huang YJ, Dong MX, Lv FJ, Wei X, Chen JJ, Zhang LJ, Qin XY, Xie P. Blend sign on computed tomography: Novel and Reliable Predictor for early hematoma growth in patients with Intracerebral Hemorrhage. Stroke. 2015;46(8):2119–23.CrossRefPubMed Li Q, Zhang G, Huang YJ, Dong MX, Lv FJ, Wei X, Chen JJ, Zhang LJ, Qin XY, Xie P. Blend sign on computed tomography: Novel and Reliable Predictor for early hematoma growth in patients with Intracerebral Hemorrhage. Stroke. 2015;46(8):2119–23.CrossRefPubMed
11.
go back to reference Goldstein JN, Fazen LE, Snider R, Schwab K, Greenberg SM, Smith EE, Lev MH, Rosand J. Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology. 2007;68(12):889–94.CrossRefPubMed Goldstein JN, Fazen LE, Snider R, Schwab K, Greenberg SM, Smith EE, Lev MH, Rosand J. Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage. Neurology. 2007;68(12):889–94.CrossRefPubMed
12.
go back to reference Li Q, Liu QJ, Yang WS, Wang XC, Zhao LB, Xiong X, Li R, Cao D, Zhu D, Wei X, et al. Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with Intracerebral Hemorrhage. Stroke. 2017;48(11):3019–25.CrossRefPubMed Li Q, Liu QJ, Yang WS, Wang XC, Zhao LB, Xiong X, Li R, Cao D, Zhu D, Wei X, et al. Island sign: an imaging predictor for early hematoma expansion and poor outcome in patients with Intracerebral Hemorrhage. Stroke. 2017;48(11):3019–25.CrossRefPubMed
13.
go back to reference Barras CD, Tress BM, Christensen S, MacGregor L, Collins M, Desmond PM, Skolnick BE, Mayer SA, Broderick JP, Diringer MN, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40(4):1325–31.CrossRefPubMed Barras CD, Tress BM, Christensen S, MacGregor L, Collins M, Desmond PM, Skolnick BE, Mayer SA, Broderick JP, Diringer MN, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40(4):1325–31.CrossRefPubMed
14.
go back to reference Divani AA, Majidi S, Luo X, Souslian FG, Zhang J, Abosch A, Tummala RP. The ABCs of accurate volumetric measurement of cerebral hematoma. Stroke. 2011;42(6):1569–74.CrossRefPubMed Divani AA, Majidi S, Luo X, Souslian FG, Zhang J, Abosch A, Tummala RP. The ABCs of accurate volumetric measurement of cerebral hematoma. Stroke. 2011;42(6):1569–74.CrossRefPubMed
15.
go back to reference Levine JM, Snider R, Finkelstein D, Gurol ME, Chanderraj R, Smith EE, Greenberg SM, Rosand J. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care. 2007;7(1):58–63.CrossRefPubMed Levine JM, Snider R, Finkelstein D, Gurol ME, Chanderraj R, Smith EE, Greenberg SM, Rosand J. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care. 2007;7(1):58–63.CrossRefPubMed
16.
go back to reference Arima H, Wang JG, Huang Y, Heeley E, Skulina C, Parsons MW, Peng B, Li Q, Su S, Tao QL, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology. 2009;73(23):1963–8.CrossRefPubMedPubMedCentral Arima H, Wang JG, Huang Y, Heeley E, Skulina C, Parsons MW, Peng B, Li Q, Su S, Tao QL, et al. Significance of perihematomal edema in acute intracerebral hemorrhage: the INTERACT trial. Neurology. 2009;73(23):1963–8.CrossRefPubMedPubMedCentral
17.
go back to reference Witsch J, Al-Mufti F, Connolly ES, Agarwal S, Melmed K, Roh DJ, Claassen J, Park S. Statins and perihemorrhagic edema in patients with spontaneous intracerebral hemorrhage. Neurology. 2019;92(18):e2145–9.PubMedPubMedCentral Witsch J, Al-Mufti F, Connolly ES, Agarwal S, Melmed K, Roh DJ, Claassen J, Park S. Statins and perihemorrhagic edema in patients with spontaneous intracerebral hemorrhage. Neurology. 2019;92(18):e2145–9.PubMedPubMedCentral
18.
go back to reference Volbers B, Staykov D, Wagner I, Dörfler A, Saake M, Schwab S, Bardutzky J. Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography. Eur J Neurol. 2011;18(11):1323–8.CrossRefPubMed Volbers B, Staykov D, Wagner I, Dörfler A, Saake M, Schwab S, Bardutzky J. Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography. Eur J Neurol. 2011;18(11):1323–8.CrossRefPubMed
19.
go back to reference McCourt R, Gould B, Gioia L, Kate M, Coutts SB, Dowlatshahi D, Asdaghi N, Jeerakathil T, Hill MD, Demchuk AM, et al. Cerebral perfusion and blood pressure do not affect perihematoma edema growth in acute intracerebral hemorrhage. Stroke. 2014;45(5):1292–8.CrossRefPubMed McCourt R, Gould B, Gioia L, Kate M, Coutts SB, Dowlatshahi D, Asdaghi N, Jeerakathil T, Hill MD, Demchuk AM, et al. Cerebral perfusion and blood pressure do not affect perihematoma edema growth in acute intracerebral hemorrhage. Stroke. 2014;45(5):1292–8.CrossRefPubMed
20.
go back to reference Fyllingen EH, Stensjøen AL, Berntsen EM, Solheim O, Reinertsen I. Glioblastoma segmentation: comparison of three different Software Packages. PLoS ONE. 2016;11(10):e0164891.CrossRefPubMedPubMedCentral Fyllingen EH, Stensjøen AL, Berntsen EM, Solheim O, Reinertsen I. Glioblastoma segmentation: comparison of three different Software Packages. PLoS ONE. 2016;11(10):e0164891.CrossRefPubMedPubMedCentral
21.
go back to reference Chen M, Li Z, Ding J, Lu X, Cheng Y, Lin J. Comparison of Common Methods for Precision Volume Measurement of Hematoma. Comput Math Methods Med. 2020;2020:6930836.CrossRefPubMedPubMedCentral Chen M, Li Z, Ding J, Lu X, Cheng Y, Lin J. Comparison of Common Methods for Precision Volume Measurement of Hematoma. Comput Math Methods Med. 2020;2020:6930836.CrossRefPubMedPubMedCentral
22.
go back to reference Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G. SlicerRT: radiation therapy research toolkit for 3D slicer. Med Phys. 2012;39(10):6332–8.CrossRefPubMed Pinter C, Lasso A, Wang A, Jaffray D, Fichtinger G. SlicerRT: radiation therapy research toolkit for 3D slicer. Med Phys. 2012;39(10):6332–8.CrossRefPubMed
23.
go back to reference Anderson CS, Huang Y, Wang JG, Arima H, Neal B, Peng B, Heeley E, Skulina C, Parsons MW, Kim JS, et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol. 2008;7(5):391–9.CrossRefPubMed Anderson CS, Huang Y, Wang JG, Arima H, Neal B, Peng B, Heeley E, Skulina C, Parsons MW, Kim JS, et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol. 2008;7(5):391–9.CrossRefPubMed
24.
go back to reference Zhao B, Jia WB, Zhang LY, Wang TZ. 1/2SH: a simple, Accurate, and Reliable Method of calculating the hematoma volume of spontaneous intracerebral hemorrhage. Stroke. 2020;51(1):193–201.CrossRefPubMed Zhao B, Jia WB, Zhang LY, Wang TZ. 1/2SH: a simple, Accurate, and Reliable Method of calculating the hematoma volume of spontaneous intracerebral hemorrhage. Stroke. 2020;51(1):193–201.CrossRefPubMed
25.
go back to reference Tambasco N, Simoni S, Sacchini E, Eusebi P, Marsili E, Nigro P, Brahimi E, Paoletti FP, Romoli M, Calabresi P. Validation of the Hemifacial Spasm Grading Scale: a clinical tool for hemifacial spasm. Neurol sciences: official J Italian Neurol Soc Italian Soc Clin Neurophysiol. 2019;40(9):1887–92.CrossRef Tambasco N, Simoni S, Sacchini E, Eusebi P, Marsili E, Nigro P, Brahimi E, Paoletti FP, Romoli M, Calabresi P. Validation of the Hemifacial Spasm Grading Scale: a clinical tool for hemifacial spasm. Neurol sciences: official J Italian Neurol Soc Italian Soc Clin Neurophysiol. 2019;40(9):1887–92.CrossRef
26.
go back to reference Xu X, Chen X, Zhang J, Zheng Y, Sun G, Yu X, Xu B. Comparison of the Tada formula with software slicer: precise and low-cost method for volume assessment of intracerebral hematoma. Stroke. 2014;45(11):3433–5.CrossRefPubMed Xu X, Chen X, Zhang J, Zheng Y, Sun G, Yu X, Xu B. Comparison of the Tada formula with software slicer: precise and low-cost method for volume assessment of intracerebral hematoma. Stroke. 2014;45(11):3433–5.CrossRefPubMed
27.
go back to reference Strik HM, Borchert H, Fels C, Knauth M, Rienhoff O, Bähr M, Verhey JF. Three-dimensional reconstruction and volumetry of intracranial haemorrhage and its mass effect. Neuroradiology. 2005;47(6):417–24.CrossRefPubMed Strik HM, Borchert H, Fels C, Knauth M, Rienhoff O, Bähr M, Verhey JF. Three-dimensional reconstruction and volumetry of intracranial haemorrhage and its mass effect. Neuroradiology. 2005;47(6):417–24.CrossRefPubMed
28.
go back to reference Xu X, Chen X, Li F, Zheng X, Wang Q, Sun G, Zhang J, Xu B. Effectiveness of endoscopic surgery for supratentorial hypertensive intracerebral hemorrhage: a comparison with craniotomy. J Neurosurg. 2018;128(2):553–9.CrossRefPubMed Xu X, Chen X, Li F, Zheng X, Wang Q, Sun G, Zhang J, Xu B. Effectiveness of endoscopic surgery for supratentorial hypertensive intracerebral hemorrhage: a comparison with craniotomy. J Neurosurg. 2018;128(2):553–9.CrossRefPubMed
29.
go back to reference Oge DD, Topcuoglu MA, Gocmen R, Arsava EM. The dynamics of hematoma surface regularity and hematoma expansion in acute intracerebral hemorrhage. J Clin neuroscience: official J Neurosurgical Soc Australasia. 2020;74:160–3.CrossRef Oge DD, Topcuoglu MA, Gocmen R, Arsava EM. The dynamics of hematoma surface regularity and hematoma expansion in acute intracerebral hemorrhage. J Clin neuroscience: official J Neurosurgical Soc Australasia. 2020;74:160–3.CrossRef
30.
go back to reference Wan S, Wei Y, Yu H, Li Y, Yao S, Song B. Computed Tomographic Portography with esophageal variceal measurements in the evaluation of esophageal Variceal Severity and Assessment of Esophageal Variceal volume efficacy. Acad Radiol. 2020;27(4):528–35.CrossRefPubMed Wan S, Wei Y, Yu H, Li Y, Yao S, Song B. Computed Tomographic Portography with esophageal variceal measurements in the evaluation of esophageal Variceal Severity and Assessment of Esophageal Variceal volume efficacy. Acad Radiol. 2020;27(4):528–35.CrossRefPubMed
31.
go back to reference Ma Z, Chen X, Huang Y, He L, Liang C, Liang C, Liu Z. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D slicer: an accurate and repeatable method. Sci Rep. 2015;5:15653.CrossRefPubMedPubMedCentral Ma Z, Chen X, Huang Y, He L, Liang C, Liang C, Liu Z. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D slicer: an accurate and repeatable method. Sci Rep. 2015;5:15653.CrossRefPubMedPubMedCentral
32.
go back to reference Egger J, Kapur T, Fedorov A, Pieper S, Miller JV, Veeraraghavan H, Freisleben B, Golby AJ, Nimsky C, Kikinis R. GBM volumetry using the 3D slicer medical image computing platform. Sci Rep. 2013;3:1364.CrossRefPubMedPubMedCentral Egger J, Kapur T, Fedorov A, Pieper S, Miller JV, Veeraraghavan H, Freisleben B, Golby AJ, Nimsky C, Kikinis R. GBM volumetry using the 3D slicer medical image computing platform. Sci Rep. 2013;3:1364.CrossRefPubMedPubMedCentral
33.
go back to reference Ng D, Churilov L, Mitchell P, Dowling R, Yan B. The CT swirl sign is Associated with Hematoma Expansion in Intracerebral Hemorrhage. AJNR Am J Neuroradiol. 2018;39(2):232–7.CrossRefPubMedPubMedCentral Ng D, Churilov L, Mitchell P, Dowling R, Yan B. The CT swirl sign is Associated with Hematoma Expansion in Intracerebral Hemorrhage. AJNR Am J Neuroradiol. 2018;39(2):232–7.CrossRefPubMedPubMedCentral
34.
go back to reference Qureshi AI, Foster LD, Lobanova I, Huang W, Suarez JI. Intensive blood pressure lowering in patients with moderate to severe Grade Acute Cerebral Hemorrhage: Post Hoc Analysis of Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH)-2 trial. Cerebrovasc Dis. 2020;49(3):244–52.CrossRefPubMed Qureshi AI, Foster LD, Lobanova I, Huang W, Suarez JI. Intensive blood pressure lowering in patients with moderate to severe Grade Acute Cerebral Hemorrhage: Post Hoc Analysis of Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH)-2 trial. Cerebrovasc Dis. 2020;49(3):244–52.CrossRefPubMed
35.
go back to reference Li Q, Warren AD, Qureshi AI, Morotti A, Falcone GJ, Sheth KN, Shoamanesh A, Dowlatshahi D, Viswanathan A, Goldstein JN. Ultra-Early Blood pressure reduction attenuates Hematoma Growth and improves outcome in Intracerebral Hemorrhage. Ann Neurol. 2020;88(2):388–95.CrossRefPubMedPubMedCentral Li Q, Warren AD, Qureshi AI, Morotti A, Falcone GJ, Sheth KN, Shoamanesh A, Dowlatshahi D, Viswanathan A, Goldstein JN. Ultra-Early Blood pressure reduction attenuates Hematoma Growth and improves outcome in Intracerebral Hemorrhage. Ann Neurol. 2020;88(2):388–95.CrossRefPubMedPubMedCentral
Metadata
Title
3D slicer-based calculation of hematoma irregularity index for predicting hematoma expansion in intracerebral hemorrhage
Authors
Liping Cao
Meng Liu
Mengmeng Wang
Jian Ding
Keshi Mao
Kefeng Liu
Song Li
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02983-w

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue