Skip to main content
Top
Published in: CardioVascular and Interventional Radiology 11/2019

01-11-2019 | Computed Tomography | Clinical Investigation

Radiation Exposure During Transarterial Chemoembolization: Angio-CT Versus Cone-Beam CT

Authors: Lauranne Piron, Julien Le Roy, Christophe Cassinotto, Julien Delicque, Ali Belgour, Carole Allimant, Jean-Paul Beregi, Joel Greffier, Nicolas Molinari, Boris Guiu

Published in: CardioVascular and Interventional Radiology | Issue 11/2019

Login to get access

Abstract

Introduction

Cone-beam computed tomography (CBCT) has been developed to improve reliability of many interventional radiology (IR) procedures performed with Angio system, such as transarterial chemoembolization (TACE). Angio-CT has emerged as a new imaging technology that combines a CT scanner with an Angio system in the same IR suite. The purpose of our study was to compare Angio system with CBCT capability and Angio-CT in terms of patient radiation exposure during TACE procedures.

Materials and Methods

Consecutive TACE procedures performed between January 2016 and September 2017 with the two imaging modalities (Artis Zeego defining the CBCT group and Infinix-i 4D-CT defining the Angio-CT group) were reviewed. TACE and patient’s characteristics and patient radiation exposure parameters were collected. Dose-area products (DAP) and dose-length products (DLP) were converted into effective doses (ED) using conversion factors. Accuracy of tumor targeting and response was retrospectively assessed.

Results

A total of 114 TACE procedures in 96 patients were included with 57 procedures in each group. The total ED in the Angio-CT group was 2.5 times lower than that in the CBCT group (median 15.4 vs. 39.2 mSv, p < 0.001). Both 2D ED and 3D ED were lower in the Angio-CT group than in the CBCT group (5.1 vs. 20 mSv, p < 0.001, and 7.4 vs. 17.9 mSv, p < 0.001, respectively). There was no significant difference neither in terms of classes of tumor targeting (p = 0.509) nor in terms of classes of tumor response (p = 0.070) between both groups.

Conclusion

Angio-CT provides significant decrease in patient effective dose during TACE procedures compared to Angio system with CBCT.
Literature
1.
go back to reference Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.CrossRefPubMed Bruix J, Sherman M. American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.CrossRefPubMed
2.
go back to reference European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.CrossRef European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of hepatocellular carcinoma. J Hepatol. 2018;69(1):182–236.CrossRef
3.
go back to reference Mahnken AH, Pereira PL, De Baere T. Interventional oncologic approaches to liver metastases. Radiology. 2013;266(2):407–30.CrossRefPubMed Mahnken AH, Pereira PL, De Baere T. Interventional oncologic approaches to liver metastases. Radiology. 2013;266(2):407–30.CrossRefPubMed
4.
go back to reference De Baere T, Deschamps F, Tselikas L, Ducreux M, Planchard D, Pearson E, et al. GEP-NETS update: interventional radiology: role in the treatment of liver metastases from GEP-NETs. Eur J Endocrinol. 2015;172(4):R151–66.CrossRefPubMed De Baere T, Deschamps F, Tselikas L, Ducreux M, Planchard D, Pearson E, et al. GEP-NETS update: interventional radiology: role in the treatment of liver metastases from GEP-NETs. Eur J Endocrinol. 2015;172(4):R151–66.CrossRefPubMed
5.
go back to reference Deschamps F, Solomon SB, Thornton RH, Rao P, Hakime A, Kuoch V, et al. Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. 2010;33(6):1235–42.CrossRef Deschamps F, Solomon SB, Thornton RH, Rao P, Hakime A, Kuoch V, et al. Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Interv Radiol. 2010;33(6):1235–42.CrossRef
6.
go back to reference Miyayama S, Yamashiro M, Hashimoto M, Hashimoto N, Ikuno M, Okumura K, et al. Identification of small hepatocellular carcinoma and tumor-feeding branches with cone-beam CT guidance technology during transcatheter arterial chemoembolization. J Vasc Interv Radiol JVIR. 2013;24(4):501–8.CrossRefPubMed Miyayama S, Yamashiro M, Hashimoto M, Hashimoto N, Ikuno M, Okumura K, et al. Identification of small hepatocellular carcinoma and tumor-feeding branches with cone-beam CT guidance technology during transcatheter arterial chemoembolization. J Vasc Interv Radiol JVIR. 2013;24(4):501–8.CrossRefPubMed
7.
go back to reference Orth RC, Wallace MJ, Kuo MD. Technology Assessment Committee of the Society of Interventional Radiology. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol JVIR. 2008;19(6):814–20.CrossRefPubMed Orth RC, Wallace MJ, Kuo MD. Technology Assessment Committee of the Society of Interventional Radiology. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol JVIR. 2008;19(6):814–20.CrossRefPubMed
8.
go back to reference Tacher V, Radaelli A, Lin M, Geschwind J-F. How I do it: cone-beam CT during transarterial chemoembolization for liver cancer. Radiology. 2015;274(2):320–34.CrossRefPubMed Tacher V, Radaelli A, Lin M, Geschwind J-F. How I do it: cone-beam CT during transarterial chemoembolization for liver cancer. Radiology. 2015;274(2):320–34.CrossRefPubMed
9.
go back to reference Wallace MJ, Murthy R, Kamat PP, Moore T, Rao SH, Ensor J, et al. Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol JVIR. 2007;18(12):1500–7.CrossRefPubMed Wallace MJ, Murthy R, Kamat PP, Moore T, Rao SH, Ensor J, et al. Impact of C-arm CT on hepatic arterial interventions for hepatic malignancies. J Vasc Interv Radiol JVIR. 2007;18(12):1500–7.CrossRefPubMed
10.
go back to reference Jonczyk M, Collettini F, Geisel D, Schnapauff D, Böning G, Wieners G, et al. Radiation exposure during TACE procedures using additional cone-beam CT (CBCT) for guidance: safety and precautions. Acta Radiol Stockh Swed 1987. 2018 284185118761203. Jonczyk M, Collettini F, Geisel D, Schnapauff D, Böning G, Wieners G, et al. Radiation exposure during TACE procedures using additional cone-beam CT (CBCT) for guidance: safety and precautions. Acta Radiol Stockh Swed 1987. 2018 284185118761203.
11.
go back to reference Yao X, Yan D, Jiang X, Li X, Zeng H, Liu D, et al. Dual-phase cone-beam CT-based navigation imaging significantly enhances tumor detectability and aids superselective transarterial chemoembolization of liver cancer. Acad Radiol. 2018;25:1031–7.CrossRefPubMed Yao X, Yan D, Jiang X, Li X, Zeng H, Liu D, et al. Dual-phase cone-beam CT-based navigation imaging significantly enhances tumor detectability and aids superselective transarterial chemoembolization of liver cancer. Acad Radiol. 2018;25:1031–7.CrossRefPubMed
12.
go back to reference Kothary N, Abdelmaksoud MHK, Tognolini A, Fahrig R, Rosenberg J, Hovsepian DM, et al. Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol JVIR. 2011;22(11):1535–43.CrossRefPubMed Kothary N, Abdelmaksoud MHK, Tognolini A, Fahrig R, Rosenberg J, Hovsepian DM, et al. Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization. J Vasc Interv Radiol JVIR. 2011;22(11):1535–43.CrossRefPubMed
13.
go back to reference Inaba Y, Arai Y, Kanematsu M, Takeuchi Y, Matsueda K, Yasui K, et al. Revealing hepatic metastases from colorectal cancer: value of combined helical CT during arterial portography and CT hepatic arteriography with a unified CT and angiography system. AJR Am J Roentgenol. 2000;174(4):955–61.CrossRefPubMed Inaba Y, Arai Y, Kanematsu M, Takeuchi Y, Matsueda K, Yasui K, et al. Revealing hepatic metastases from colorectal cancer: value of combined helical CT during arterial portography and CT hepatic arteriography with a unified CT and angiography system. AJR Am J Roentgenol. 2000;174(4):955–61.CrossRefPubMed
14.
go back to reference Takada K, Toyoda H, Tada T, Ito T, Hasegawa R, Gotoh T, et al. Accurate and rapid identification of feeding arteries with multidetector-row angiography-assisted computed tomography for transarterial chemoembolization for hepatocellular carcinoma. J Gastroenterol. 2015;50(12):1190–6.CrossRefPubMed Takada K, Toyoda H, Tada T, Ito T, Hasegawa R, Gotoh T, et al. Accurate and rapid identification of feeding arteries with multidetector-row angiography-assisted computed tomography for transarterial chemoembolization for hepatocellular carcinoma. J Gastroenterol. 2015;50(12):1190–6.CrossRefPubMed
15.
go back to reference Toyoda H, Kumada T, Sone Y. Impact of a unified CT angiography system on outcome of patients with hepatocellular carcinoma. AJR Am J Roentgenol. 2009;192(3):766–74.CrossRefPubMed Toyoda H, Kumada T, Sone Y. Impact of a unified CT angiography system on outcome of patients with hepatocellular carcinoma. AJR Am J Roentgenol. 2009;192(3):766–74.CrossRefPubMed
16.
go back to reference Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R, et al. Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Interv Radiol. 2006;29(6):1034–8.CrossRef Hirota S, Nakao N, Yamamoto S, Kobayashi K, Maeda H, Ishikura R, et al. Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Interv Radiol. 2006;29(6):1034–8.CrossRef
17.
go back to reference International Commission on Radiological Protection. Radiation protection in medicine. ICRP Publication 105. Ann ICRP. 2007;37(6):1–63.CrossRef International Commission on Radiological Protection. Radiation protection in medicine. ICRP Publication 105. Ann ICRP. 2007;37(6):1–63.CrossRef
18.
go back to reference Etard C, Bigand E, Salvat C, Vidal V, Beregi JP, Hornbeck A, et al. Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France. Eur Radiol. 2017;27(10):4281–90.CrossRefPubMed Etard C, Bigand E, Salvat C, Vidal V, Beregi JP, Hornbeck A, et al. Patient dose in interventional radiology: a multicentre study of the most frequent procedures in France. Eur Radiol. 2017;27(10):4281–90.CrossRefPubMed
19.
go back to reference Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39(5):368–76.CrossRefPubMed Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39(5):368–76.CrossRefPubMed
20.
go back to reference Karavasilis E, Dimitriadis A, Gonis H, Pappas P, Georgiou E, Yakoumakis E. Dose coefficients for liver chemoembolisation procedures using Monte Carlo code. Radiat Prot Dosim. 2016;172(4):409–15.CrossRef Karavasilis E, Dimitriadis A, Gonis H, Pappas P, Georgiou E, Yakoumakis E. Dose coefficients for liver chemoembolisation procedures using Monte Carlo code. Radiat Prot Dosim. 2016;172(4):409–15.CrossRef
21.
go back to reference Suzuki S, Furui S, Yamaguchi I, Yamagishi M, Watanabe A, Abe T, et al. Effective dose during abdominal three-dimensional imaging with a flat-panel detector angiography system. Radiology. 2009;250(2):545–50.CrossRefPubMed Suzuki S, Furui S, Yamaguchi I, Yamagishi M, Watanabe A, Abe T, et al. Effective dose during abdominal three-dimensional imaging with a flat-panel detector angiography system. Radiology. 2009;250(2):545–50.CrossRefPubMed
22.
go back to reference Sailer AM, Schurink GWH, Wildberger JE, de Graaf R, van Zwam WH, de Haan MW, et al. Radiation exposure of abdominal cone beam computed tomography. Cardiovasc Interv Radiol. 2015;38(1):112–20.CrossRef Sailer AM, Schurink GWH, Wildberger JE, de Graaf R, van Zwam WH, de Haan MW, et al. Radiation exposure of abdominal cone beam computed tomography. Cardiovasc Interv Radiol. 2015;38(1):112–20.CrossRef
23.
go back to reference Hwang Y-S, Tsai H-Y, Lin Y-Y, Lui K-W. Investigations of organ and effective doses of abdominal cone-beam computed tomography during transarterial chemoembolization using Monte Carlo simulation. BMC Med Imaging. 2018;18(1):2.CrossRefPubMedPubMedCentral Hwang Y-S, Tsai H-Y, Lin Y-Y, Lui K-W. Investigations of organ and effective doses of abdominal cone-beam computed tomography during transarterial chemoembolization using Monte Carlo simulation. BMC Med Imaging. 2018;18(1):2.CrossRefPubMedPubMedCentral
24.
go back to reference Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257(1):158–66.CrossRefPubMed Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257(1):158–66.CrossRefPubMed
25.
go back to reference Sato Y, Watanabe H, Sone M, Onaya H, Sakamoto N, Osuga K, et al. Tumor response evaluation criteria for HCC (hepatocellular carcinoma) treated using TACE (transcatheter arterial chemoembolization): RECIST (response evaluation criteria in solid tumors) version 1.1 and mRECIST (modified RECIST): JIVROSG-0602. UPS J Med Sci. 2013;118(1):16–22.CrossRefPubMedPubMedCentral Sato Y, Watanabe H, Sone M, Onaya H, Sakamoto N, Osuga K, et al. Tumor response evaluation criteria for HCC (hepatocellular carcinoma) treated using TACE (transcatheter arterial chemoembolization): RECIST (response evaluation criteria in solid tumors) version 1.1 and mRECIST (modified RECIST): JIVROSG-0602. UPS J Med Sci. 2013;118(1):16–22.CrossRefPubMedPubMedCentral
26.
go back to reference Roy C, Quin R, Labani A, Leyendecker P, Mertz L, Ohana M. Wide volume versus helical acquisition using 320-detector row computed tomography for computed tomography urography in adults. Diagn Interv Imaging. 2018;99:653–62.CrossRefPubMed Roy C, Quin R, Labani A, Leyendecker P, Mertz L, Ohana M. Wide volume versus helical acquisition using 320-detector row computed tomography for computed tomography urography in adults. Diagn Interv Imaging. 2018;99:653–62.CrossRefPubMed
27.
go back to reference Pung L, Ahmad M, Mueller K, Rosenberg J, Stave C, Hwang GL, et al. The role of cone-beam CT in transcatheter arterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis. J Vasc Interv Radiol JVIR. 2017;28(3):334–41.CrossRefPubMed Pung L, Ahmad M, Mueller K, Rosenberg J, Stave C, Hwang GL, et al. The role of cone-beam CT in transcatheter arterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis. J Vasc Interv Radiol JVIR. 2017;28(3):334–41.CrossRefPubMed
28.
go back to reference Miyayama S, Yamashiro M, Okuda M, Yoshie Y, Sugimori N, Igarashi S, et al. Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. Cardiovasc Interv Radiol. 2009;32(2):255–64.CrossRef Miyayama S, Yamashiro M, Okuda M, Yoshie Y, Sugimori N, Igarashi S, et al. Usefulness of cone-beam computed tomography during ultraselective transcatheter arterial chemoembolization for small hepatocellular carcinomas that cannot be demonstrated on angiography. Cardiovasc Interv Radiol. 2009;32(2):255–64.CrossRef
29.
go back to reference Chehab MA, Brinjikji W, Copelan A, Venkatesan AM. Navigational tools for interventional radiology and interventional oncology applications. Semin Interv Radiol. 2015;32(4):416–27.CrossRef Chehab MA, Brinjikji W, Copelan A, Venkatesan AM. Navigational tools for interventional radiology and interventional oncology applications. Semin Interv Radiol. 2015;32(4):416–27.CrossRef
30.
31.
go back to reference Miyayama S, Matsui O, Yamashiro M, Ryu Y, Takata H, Takeda T, et al. Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging. 2009;34(4):502–6.CrossRefPubMed Miyayama S, Matsui O, Yamashiro M, Ryu Y, Takata H, Takeda T, et al. Detection of hepatocellular carcinoma by CT during arterial portography using a cone-beam CT technology: comparison with conventional CTAP. Abdom Imaging. 2009;34(4):502–6.CrossRefPubMed
32.
go back to reference Lin EY, Jones AK, Chintalapani G, Jeng ZS, Ensor J, Odisio BC. Comparative analysis of intra-arterial cone-beam versus conventional computed tomography during hepatic arteriography for transarterial chemoembolization planning. Cardiovasc Intervent Radiol. 2018. Lin EY, Jones AK, Chintalapani G, Jeng ZS, Ensor J, Odisio BC. Comparative analysis of intra-arterial cone-beam versus conventional computed tomography during hepatic arteriography for transarterial chemoembolization planning. Cardiovasc Intervent Radiol. 2018.
33.
go back to reference Vano E, Järvinen H, Kosunen A, Bly R, Malone J, Dowling A, et al. Patient dose in interventional radiology: a European survey. Radiat Prot Dosim. 2008;129(1–3):39–45.CrossRef Vano E, Järvinen H, Kosunen A, Bly R, Malone J, Dowling A, et al. Patient dose in interventional radiology: a European survey. Radiat Prot Dosim. 2008;129(1–3):39–45.CrossRef
34.
go back to reference Vano E, Sanchez R, Fernandez JM, Gallego JJ, Verdu JF, de Garay MG, et al. Patient dose reference levels for interventional radiology: a national approach. Cardiovasc Intervent Radiol. 2009;32(1):19–24.CrossRefPubMed Vano E, Sanchez R, Fernandez JM, Gallego JJ, Verdu JF, de Garay MG, et al. Patient dose reference levels for interventional radiology: a national approach. Cardiovasc Intervent Radiol. 2009;32(1):19–24.CrossRefPubMed
35.
go back to reference Office fédéral de la santé publique, Confédération suisse. Niveaux de référence diagnostiques en radiologie interventionnelle (Notice R-06-05) 2008. Office fédéral de la santé publique, Confédération suisse. Niveaux de référence diagnostiques en radiologie interventionnelle (Notice R-06-05) 2008.
36.
go back to reference Ruiz-Cruces R, Vano E, Carrera-Magariño F, Moreno-Rodriguez F, Soler-Cantos MM, Canis-Lopez M, et al. Diagnostic reference levels and complexity indices in interventional radiology: a national programme. Eur Radiol. 2016;26(12):4268–76.CrossRefPubMed Ruiz-Cruces R, Vano E, Carrera-Magariño F, Moreno-Rodriguez F, Soler-Cantos MM, Canis-Lopez M, et al. Diagnostic reference levels and complexity indices in interventional radiology: a national programme. Eur Radiol. 2016;26(12):4268–76.CrossRefPubMed
37.
go back to reference Miller DL, Kwon D, Bonavia GH. Reference levels for patient radiation doses in interventional radiology: proposed initial values for US practice. Radiology. 2009;253(3):753–64.CrossRefPubMedPubMedCentral Miller DL, Kwon D, Bonavia GH. Reference levels for patient radiation doses in interventional radiology: proposed initial values for US practice. Radiology. 2009;253(3):753–64.CrossRefPubMedPubMedCentral
Metadata
Title
Radiation Exposure During Transarterial Chemoembolization: Angio-CT Versus Cone-Beam CT
Authors
Lauranne Piron
Julien Le Roy
Christophe Cassinotto
Julien Delicque
Ali Belgour
Carole Allimant
Jean-Paul Beregi
Joel Greffier
Nicolas Molinari
Boris Guiu
Publication date
01-11-2019
Publisher
Springer US
Published in
CardioVascular and Interventional Radiology / Issue 11/2019
Print ISSN: 0174-1551
Electronic ISSN: 1432-086X
DOI
https://doi.org/10.1007/s00270-019-02269-8

Other articles of this Issue 11/2019

CardioVascular and Interventional Radiology 11/2019 Go to the issue