Skip to main content
Top
Published in: Journal of Translational Medicine 1/2019

Open Access 01-12-2019 | Research

Complementary biobank of rodent tissue samples to study the effect of World Trade Center exposure on cancer development

Authors: Wil Lieberman-Cribbin, Stephanie Tuminello, Christina Gillezeau, Maaike van Gerwen, Rachel Brody, David J. Mulholland, Lori Horton, Maureen Sisco, Colette Prophete, Judith Zelikoff, Hyun-Wook Lee, Sung-Hyun Park, Lung-Chi Chen, Mitchell D. Cohen, Emanuela Taioli

Published in: Journal of Translational Medicine | Issue 1/2019

Login to get access

Abstract

World Trade Center (WTC) responders were exposed to mixture of dust, smoke, chemicals and carcinogens. New York University (NYU) and Mount Sinai have recreated WTC exposure in rodents to observe the resulting systemic and local biological responses. These experiments aid in the interpretation of epidemiological observations and are useful for understanding the carcinogenesis process in the exposed human WTC cohort. Here we describe the implementation of a tissue bank system for the rodents experimentally exposed to WTC dust. NYU samples were experimentally exposed to WTC dust via intratracheal inhalation that mimicked conditions in the immediate aftermath of the disaster. Tissue from Mount Sinai was derived from genetically modified mice exposed to WTC dust via nasal instillation. All processed tissues include annotations of the experimental design, WTC dust concentration/dose, exposure route and duration, genetic background of the rodent, and method of tissue isolation/storage. A biobank of tissue from rodents exposed to WTC dust has been compiled representing an important resource for the scientific community. The biobank remains available as a scientific resource for future research through established mechanisms for samples request and utilization. Studies using the WTC tissue bank would benefit from confirming their findings in corresponding tissues from organs of animals experimentally exposed to WTC dust. Studies on rodent tissues will advance the understanding of the biology of the tumors developed by WTC responders and ultimately impact the modalities of treatment, and the probability of success and survival of WTC cancer patients.
Literature
1.
go back to reference Lioy PJ, Georgopoulos P. The anatomy of the exposures that occurred around the World Trade Center site: 9/11 and beyond. Ann N Y Acad Sci. 2006;1076:54–79.CrossRef Lioy PJ, Georgopoulos P. The anatomy of the exposures that occurred around the World Trade Center site: 9/11 and beyond. Ann N Y Acad Sci. 2006;1076:54–79.CrossRef
2.
go back to reference Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 2013;14(4):287.CrossRef Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 2013;14(4):287.CrossRef
3.
go back to reference McCleery RE, Middendorf PJ. World Trade Center chemicals of potential concern and selected other chemical agents: summary of cancer classifications by the National Toxicology Program and International Agency for Research on Cancer. 2012. McCleery RE, Middendorf PJ. World Trade Center chemicals of potential concern and selected other chemical agents: summary of cancer classifications by the National Toxicology Program and International Agency for Research on Cancer. 2012.
4.
go back to reference Gibbs L, Farley T, Aldrich TK, Cohen MD, Difede J, Gelberg KH, Greene C, Kleinman EJ, Landrigan PJ, Leinhardt RR, Prezant D, Raju R, Reibman J, Sadler P, Slone MS (World Trade Center Medical Working Group). 2010 Annual Report on 9/11 Health. 2010. http://www.nyc.gov/9-11HealthInfo. Accessed 17 Apr 2019. Gibbs L, Farley T, Aldrich TK, Cohen MD, Difede J, Gelberg KH, Greene C, Kleinman EJ, Landrigan PJ, Leinhardt RR, Prezant D, Raju R, Reibman J, Sadler P, Slone MS (World Trade Center Medical Working Group). 2010 Annual Report on 9/11 Health. 2010. http://​www.​nyc.​gov/​9-11HealthInfo. Accessed 17 Apr 2019.
5.
go back to reference Gibbs L, Farley T, Aldrich TK, Cohen MD, Difede J, Gelberg KH, Greene C, Kleinman EJ, Landrigan PJ, Leinhardt RR, Prezant D, Raju R, Reibman J, Sadler P, Slone MS, Thorpe L (World Trade Center Medical Working Group). 2011 Annual Report on 9/11 Health. 2011. http://www.nyc.gov/9-11HealthInfo. Accessed 17 Apr 2019. Gibbs L, Farley T, Aldrich TK, Cohen MD, Difede J, Gelberg KH, Greene C, Kleinman EJ, Landrigan PJ, Leinhardt RR, Prezant D, Raju R, Reibman J, Sadler P, Slone MS, Thorpe L (World Trade Center Medical Working Group). 2011 Annual Report on 9/11 Health. 2011. http://​www.​nyc.​gov/​9-11HealthInfo. Accessed 17 Apr 2019.
6.
go back to reference Lippmann M, Cohen MD, Chen LC. Health effects of World Trade Center (WTC) dust. CRC Crit Rev in Toxicol. 2015;45:492–530.CrossRef Lippmann M, Cohen MD, Chen LC. Health effects of World Trade Center (WTC) dust. CRC Crit Rev in Toxicol. 2015;45:492–530.CrossRef
7.
go back to reference Wisnivesky JP, Teitelbaum SL, Todd AC, Boffetta P, Crane M, Crowley L, et al. Persistence of multiple illnesses in World Trade Center rescue and recovery workers: a cohort study. Lancet. 2011;378(9794):888–97.CrossRef Wisnivesky JP, Teitelbaum SL, Todd AC, Boffetta P, Crane M, Crowley L, et al. Persistence of multiple illnesses in World Trade Center rescue and recovery workers: a cohort study. Lancet. 2011;378(9794):888–97.CrossRef
8.
go back to reference Solan S, Wallenstein S, Shapiro M, Teitelbaum SL, Stevenson L, Kochman A, et al. Cancer incidence in world trade center rescue and recovery workers, 2001–2008. Environ Health Perspect. 2013;121(6):699.CrossRef Solan S, Wallenstein S, Shapiro M, Teitelbaum SL, Stevenson L, Kochman A, et al. Cancer incidence in world trade center rescue and recovery workers, 2001–2008. Environ Health Perspect. 2013;121(6):699.CrossRef
9.
go back to reference Li J, Brackbill RM, Liao TS, Qiao B, Cone JE, Farfel MR, et al. Ten-year cancer incidence in rescue/recovery workers and civilians exposed to the September 11, 2001 terrorist attacks on the World Trade Center. Am J Ind Med. 2016;59(9):709–21.CrossRef Li J, Brackbill RM, Liao TS, Qiao B, Cone JE, Farfel MR, et al. Ten-year cancer incidence in rescue/recovery workers and civilians exposed to the September 11, 2001 terrorist attacks on the World Trade Center. Am J Ind Med. 2016;59(9):709–21.CrossRef
10.
go back to reference Singh A, Zeig-Owens R, Moir W, Hall CB, Schwartz T, Vossbrinck M, et al. Estimation of future cancer burden among rescue and recovery workers exposed to the World Trade Center disaster. JAMA Oncology. 2018;4(6):828–31.CrossRef Singh A, Zeig-Owens R, Moir W, Hall CB, Schwartz T, Vossbrinck M, et al. Estimation of future cancer burden among rescue and recovery workers exposed to the World Trade Center disaster. JAMA Oncology. 2018;4(6):828–31.CrossRef
11.
go back to reference Lioy PJ, Weisel CP, Millette JR, Eisenreich S, Vallero D, Offenberg J, et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001. Environ Health Perspect. 2002;110(7):703.CrossRef Lioy PJ, Weisel CP, Millette JR, Eisenreich S, Vallero D, Offenberg J, et al. Characterization of the dust/smoke aerosol that settled east of the World Trade Center (WTC) in lower Manhattan after the collapse of the WTC 11 September 2001. Environ Health Perspect. 2002;110(7):703.CrossRef
12.
go back to reference Clark RN, Green RO, Swayze GA, Meeker G, Sutley S, Hoefen TM, et al. Environmental studies of the World Trade Center area after the September 11, 2001 attack. US Geological Survey; Report No.: 2331-1258. 2001. Clark RN, Green RO, Swayze GA, Meeker G, Sutley S, Hoefen TM, et al. Environmental studies of the World Trade Center area after the September 11, 2001 attack. US Geological Survey; Report No.: 2331-1258. 2001.
13.
go back to reference Edelman P, Osterloh J, Pirkle J, Caudill SP, Grainger J, Jones R, et al. Biomonitoring of chemical exposure among New York City firefighters responding to the World Trade Center fire and collapse. Environ Health Perspect. 2003;111(16):1906.CrossRef Edelman P, Osterloh J, Pirkle J, Caudill SP, Grainger J, Jones R, et al. Biomonitoring of chemical exposure among New York City firefighters responding to the World Trade Center fire and collapse. Environ Health Perspect. 2003;111(16):1906.CrossRef
14.
go back to reference Litten S, McChesney DJ, Hamilton MC, Fowler B. Destruction of the World Trade Center and PCBs, PBDEs, PCDD/Fs, PBDD/Fs, and chlorinated biphenylenes in water, sediment, and sewage sludge. Environ Sci Technol. 2003;37(24):5502–10.CrossRef Litten S, McChesney DJ, Hamilton MC, Fowler B. Destruction of the World Trade Center and PCBs, PBDEs, PCDD/Fs, PBDD/Fs, and chlorinated biphenylenes in water, sediment, and sewage sludge. Environ Sci Technol. 2003;37(24):5502–10.CrossRef
15.
go back to reference McGee JK, Chen LC, Cohen MD, Chee GR, Prophete CM, Haykal-Coates N, et al. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ Health Perspect. 2003;111(7):972.CrossRef McGee JK, Chen LC, Cohen MD, Chee GR, Prophete CM, Haykal-Coates N, et al. Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment. Environ Health Perspect. 2003;111(7):972.CrossRef
16.
go back to reference Offenberg J, Eisenreich S, Chen L, Cohen M, Chee G, Prophete C, et al. Persistent organic pollutants in the dusts that settled across lower Manhattan after September 11, 2001. Environ Sci Technol. 2003;37(3):502–8.CrossRef Offenberg J, Eisenreich S, Chen L, Cohen M, Chee G, Prophete C, et al. Persistent organic pollutants in the dusts that settled across lower Manhattan after September 11, 2001. Environ Sci Technol. 2003;37(3):502–8.CrossRef
17.
go back to reference Landrigan PJ, Lioy PJ, Thurston G, Berkowitz G, Chen L, Chillrud SN, et al. Health and environmental consequences of the world trade center disaster. Environ Health Perspect. 2004;112(6):731.CrossRef Landrigan PJ, Lioy PJ, Thurston G, Berkowitz G, Chen L, Chillrud SN, et al. Health and environmental consequences of the world trade center disaster. Environ Health Perspect. 2004;112(6):731.CrossRef
18.
go back to reference Lieberman-Cribbin W, Tuminello S, Gillezeau C, van Gerwen M, Brody R, Donovan M, Taioli E. The development of a Biobank of cancer tissue samples from World Trade Center responders. J Transl Med. 2018;16(1):280.CrossRef Lieberman-Cribbin W, Tuminello S, Gillezeau C, van Gerwen M, Brody R, Donovan M, Taioli E. The development of a Biobank of cancer tissue samples from World Trade Center responders. J Transl Med. 2018;16(1):280.CrossRef
19.
go back to reference Gavett SH. World Trade Center fine particulate matter—chemistry and toxic respiratory effects: an overview. Environ Health Perspect. 2003;111(7):971.CrossRef Gavett SH. World Trade Center fine particulate matter—chemistry and toxic respiratory effects: an overview. Environ Health Perspect. 2003;111(7):971.CrossRef
20.
go back to reference Gavett SH, Haykal-Coates N, Highfill JW, Ledbetter AD, Chen LC, Cohen MD, Harkema JR, Wagner JG, Costa DL. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice. Environ Health Perspect. 2003;111(7):981–91.CrossRef Gavett SH, Haykal-Coates N, Highfill JW, Ledbetter AD, Chen LC, Cohen MD, Harkema JR, Wagner JG, Costa DL. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice. Environ Health Perspect. 2003;111(7):981–91.CrossRef
21.
go back to reference Vaughan JM, Garrett BJ, Prophete C, Horton L, Sisco M, Soukup JM, Zelikoff JT, Ghio A, Peltier RE, Asgharian B, Chen LC. A novel system to generate WTC dust particles for inhalation exposures. J Eposure Sci Environ Epidemiol. 2014;24(1):105.CrossRef Vaughan JM, Garrett BJ, Prophete C, Horton L, Sisco M, Soukup JM, Zelikoff JT, Ghio A, Peltier RE, Asgharian B, Chen LC. A novel system to generate WTC dust particles for inhalation exposures. J Eposure Sci Environ Epidemiol. 2014;24(1):105.CrossRef
22.
go back to reference Cohen MD, Vaughan JM, Garrett B, Prophete C, Horton L, Sisco M, Kodavanti UP, Ward WO, Peltier RE, Zelikoff J, Chen LC. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung. J Immunotoxic. 2015;12(2):140–53.CrossRef Cohen MD, Vaughan JM, Garrett B, Prophete C, Horton L, Sisco M, Kodavanti UP, Ward WO, Peltier RE, Zelikoff J, Chen LC. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung. J Immunotoxic. 2015;12(2):140–53.CrossRef
23.
go back to reference Cohen MD, Vaughan JM, Garrett B, Prophete C, Horton L, Sisco M, Ghio A, Zelikoff J, Lung-Chi C. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats. Inhal Toxicol. 2015;27(7):354–61.PubMedPubMedCentral Cohen MD, Vaughan JM, Garrett B, Prophete C, Horton L, Sisco M, Ghio A, Zelikoff J, Lung-Chi C. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats. Inhal Toxicol. 2015;27(7):354–61.PubMedPubMedCentral
24.
go back to reference Lorber M, Gibb H, Grant L, Pinto J, Pleil J, Cleverly D. Assessment of inhalation exposures and potential health risks to the general population that resulted from the collapse of the World Trade Center towers. Risk Anal. 2007;27(5):1203–21.CrossRef Lorber M, Gibb H, Grant L, Pinto J, Pleil J, Cleverly D. Assessment of inhalation exposures and potential health risks to the general population that resulted from the collapse of the World Trade Center towers. Risk Anal. 2007;27(5):1203–21.CrossRef
25.
go back to reference Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.CrossRef Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.CrossRef
26.
go back to reference Steck PA, Pershouse MA, Jasser SA, Yung WA, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356.CrossRef Steck PA, Pershouse MA, Jasser SA, Yung WA, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356.CrossRef
27.
go back to reference Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol Mech Dis. 2009;28(4):127–50.CrossRef Chalhoub N, Baker SJ. PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol Mech Dis. 2009;28(4):127–50.CrossRef
28.
go back to reference Bethel CR, DeMarzo AM, Nelson WG. Molecular pathogenesis of prostate cancer: somatic, epigenetic, and genetic alterations. Molecular pathology. Cambridge: Academic Press; 2009. p. 489–500.CrossRef Bethel CR, DeMarzo AM, Nelson WG. Molecular pathogenesis of prostate cancer: somatic, epigenetic, and genetic alterations. Molecular pathology. Cambridge: Academic Press; 2009. p. 489–500.CrossRef
29.
go back to reference Song MS, Salmena L, Pandolfi PP, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283.CrossRef Song MS, Salmena L, Pandolfi PP, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283.CrossRef
30.
31.
go back to reference Suzuki A, Nakano T, Mak TW, Sasaki T. Portrait of PTEN: messages from mutant mice. Cancer Sci. 2008;99(2):209–13.CrossRef Suzuki A, Nakano T, Mak TW, Sasaki T. Portrait of PTEN: messages from mutant mice. Cancer Sci. 2008;99(2):209–13.CrossRef
32.
go back to reference Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene. 1998;16(13):1743.CrossRef Feilotter HE, Nagai MA, Boag AH, Eng C, Mulligan LM. Analysis of PTEN and the 10q23 region in primary prostate carcinomas. Oncogene. 1998;16(13):1743.CrossRef
33.
go back to reference Hermans KG, van Alewijk DC, Veltman JA, van Weerden W, van Kessel AG, Trapman J. Loss of a small region around the PTEN locus is a major chromosome 10 alteration in prostate cancer xenografts and cell lines. Genes Chromosom Cancer. 2004;39(3):171–84.CrossRef Hermans KG, van Alewijk DC, Veltman JA, van Weerden W, van Kessel AG, Trapman J. Loss of a small region around the PTEN locus is a major chromosome 10 alteration in prostate cancer xenografts and cell lines. Genes Chromosom Cancer. 2004;39(3):171–84.CrossRef
34.
go back to reference Müller M, Rink K, Krause H, Miller K. PTEN/MMAC1 mutations in prostate cancer. Prostate Cancer Prostatic Dis. 2000;3(S1):S32.CrossRef Müller M, Rink K, Krause H, Miller K. PTEN/MMAC1 mutations in prostate cancer. Prostate Cancer Prostatic Dis. 2000;3(S1):S32.CrossRef
35.
go back to reference Karayi MK, Markham AF. Molecular biology of prostate cancer. Prostate Cancer Prostatic Dis. 2004;7(1):6.CrossRef Karayi MK, Markham AF. Molecular biology of prostate cancer. Prostate Cancer Prostatic Dis. 2004;7(1):6.CrossRef
36.
go back to reference Dong JT. Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev. 2001;20(3–4):173–93.CrossRef Dong JT. Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev. 2001;20(3–4):173–93.CrossRef
37.
go back to reference Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998;4(3):811–5.PubMed Wang SI, Parsons R, Ittmann M. Homozygous deletion of the PTEN tumor suppressor gene in a subset of prostate adenocarcinomas. Clin Cancer Res. 1998;4(3):811–5.PubMed
38.
go back to reference Maeda M, Murakami Y, Watari K, Kuwano M, Izumi H, Ono M. CpG hypermethylation contributes to decreased expression of PTEN during acquired resistance to gefitinib in human lung cancer cell lines. Lung Cancer. 2015;87(3):265–71.CrossRef Maeda M, Murakami Y, Watari K, Kuwano M, Izumi H, Ono M. CpG hypermethylation contributes to decreased expression of PTEN during acquired resistance to gefitinib in human lung cancer cell lines. Lung Cancer. 2015;87(3):265–71.CrossRef
39.
go back to reference Noro R, Gemma A, Miyanaga A, Kosaihira S, Minegishi Y, Nara M, Kokubo Y, Seike M, Kataoka K, Matsuda K, Okano T. PTEN inactivation in lung cancer cells and the effect of its recovery on treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Int J Oncol. 2007;31(5):1157–63.PubMed Noro R, Gemma A, Miyanaga A, Kosaihira S, Minegishi Y, Nara M, Kokubo Y, Seike M, Kataoka K, Matsuda K, Okano T. PTEN inactivation in lung cancer cells and the effect of its recovery on treatment with epidermal growth factor receptor tyrosine kinase inhibitors. Int J Oncol. 2007;31(5):1157–63.PubMed
40.
go back to reference Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4(3):209–21.CrossRef Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4(3):209–21.CrossRef
41.
go back to reference Morton J, Snider TA. Guidelines for collection and processing of lungs from aged mice for histological studies. Pathobiol Aging Age Relat Dis. 2017;7(1):1313676.CrossRef Morton J, Snider TA. Guidelines for collection and processing of lungs from aged mice for histological studies. Pathobiol Aging Age Relat Dis. 2017;7(1):1313676.CrossRef
42.
go back to reference Gong Y, Wang L, Yu H, Alpert N, Cohen MD, Prophete C, Horton L, Sisco M, Park SH, Lee HW, Zelikoff J. Prostate Cancer in World Trade Center responders demonstrates evidence of an inflammatory cascade. Mol Cancer Res. 2019;17:1605–12.CrossRef Gong Y, Wang L, Yu H, Alpert N, Cohen MD, Prophete C, Horton L, Sisco M, Park SH, Lee HW, Zelikoff J. Prostate Cancer in World Trade Center responders demonstrates evidence of an inflammatory cascade. Mol Cancer Res. 2019;17:1605–12.CrossRef
43.
go back to reference Kuan PF, Waszczuk MA, Kotov R, Marsit CJ, Guffanti G, Gonzalez A, Yang X, Koenen K, Bromet E, Luft BJ. An epigenome-wide DNA methylation study of PTSD and depression in World Trade Center responders. Transl Psychiatry. 2017;7(6):e1158.CrossRef Kuan PF, Waszczuk MA, Kotov R, Marsit CJ, Guffanti G, Gonzalez A, Yang X, Koenen K, Bromet E, Luft BJ. An epigenome-wide DNA methylation study of PTSD and depression in World Trade Center responders. Transl Psychiatry. 2017;7(6):e1158.CrossRef
44.
go back to reference Kuan PF, Waszczuk MA, Kotov R, Clouston S, Yang X, Singh PK, Glenn ST, Gomez EC, Wang J, Bromet E, Luft BJ. Gene expression associated with PTSD in World Trade Center responders: an RNA sequencing study. Transl Psychiatry. 2017;7(12):1297.CrossRef Kuan PF, Waszczuk MA, Kotov R, Clouston S, Yang X, Singh PK, Glenn ST, Gomez EC, Wang J, Bromet E, Luft BJ. Gene expression associated with PTSD in World Trade Center responders: an RNA sequencing study. Transl Psychiatry. 2017;7(12):1297.CrossRef
Metadata
Title
Complementary biobank of rodent tissue samples to study the effect of World Trade Center exposure on cancer development
Authors
Wil Lieberman-Cribbin
Stephanie Tuminello
Christina Gillezeau
Maaike van Gerwen
Rachel Brody
David J. Mulholland
Lori Horton
Maureen Sisco
Colette Prophete
Judith Zelikoff
Hyun-Wook Lee
Sung-Hyun Park
Lung-Chi Chen
Mitchell D. Cohen
Emanuela Taioli
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2019
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-019-2089-7

Other articles of this Issue 1/2019

Journal of Translational Medicine 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.