Skip to main content
Top
Published in: Malaria Journal 1/2008

Open Access 01-12-2008 | Research

Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle

Authors: Hamid R Basseri, Soghra Doosti, Kamran Akbarzadeh, Mehdi Nateghpour, Miranda MA Whitten, Hossein Ladoni

Published in: Malaria Journal | Issue 1/2008

Login to get access

Abstract

Background

Despite the abundance of studies conducted on the role of mosquitoes in malaria transmission, the biology and interaction of Plasmodium with its insect host still holds many mysteries. This paper provides the first study to follow the sporogonic cycle of Plasmodium vivax in a wild insecticide-resistant mysorensis strain of Anopheles stephensi, a major vector of vivax malaria in south-eastern Iran. The study subsequently demonstrates that host-parasite sugar binding interactions are critical to the development of this parasite in the salivary glands of its mosquito host. The identity of the receptors or sugars involved was revealed by a receptor "pre-saturation" strategy in which sugars fed to the mosquitoes inhibited normal host-parasite interactions.

Methods

Anopheles stephensi mysorensis mosquitoes were artificially infected with P. vivax by feeding on the blood of gametocytaemic volunteers reporting to local malaria clinics in the Sistan-Baluchistan province of south-eastern Iran. In order to determine the inhibitory effect of carbohydrates on sporogonic development, vector mosquitoes were allowed to ingest blood meals containing both gametocytes and added carbohydrates. The carbohydrates tested were GlcNAc, GalNAc, arabinose, fucose, mannose, lactose, glucose and galactose. Sporogonic development was assessed by survival of the parasite at both the oocyst and sporozoite stages.

Results

Oocyst development was observed among nearly 6% of the fed control mosquitoes but the overall number of mosquitoes exhibiting sporozoite invasion of the salivary glands was 47.5% lower than the number supporting oocysts in their midgut. Of the tested carbohydrates, only arabinose and fucose slightly perturbed the development of P. vivax oocysts at the basal side of the mosquito midgut, and the remaining sugars caused no reductions in oocyst development. Strikingly however, sporozoites were completely absent from the salivary glands of mosquitoes treated with mannose, GalNAc, and lactose.

Conclusion

The study indicates that An. stephensi in southern Iran has the potential to survive long enough to be re-infected and transmit vivax malaria several times, based on the average adult female longevity (about 30 days) and its gonotrophic cycle (2–3 days) during the malaria transmission season. Certain sugar binding interactions are important for the development of P. vivax sporozoites, and this information may be instrumental for the development of transmission blocking strategies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Whitten MMA, Shiao SH, Levashina EA: Mosquito midgut and malaria: cell biology, compartmentalization and immunology. Parasite Immunol. 2006, 28: 121-130. 10.1111/j.1365-3024.2006.00804.x.CrossRefPubMed Whitten MMA, Shiao SH, Levashina EA: Mosquito midgut and malaria: cell biology, compartmentalization and immunology. Parasite Immunol. 2006, 28: 121-130. 10.1111/j.1365-3024.2006.00804.x.CrossRefPubMed
2.
go back to reference Billingsley PF, Baird J, Mitchell JA, Drakeley C: Immune interaction between mosquitoes and their hosts. Parasite Immunol. 2006, 28: 143-153.CrossRefPubMed Billingsley PF, Baird J, Mitchell JA, Drakeley C: Immune interaction between mosquitoes and their hosts. Parasite Immunol. 2006, 28: 143-153.CrossRefPubMed
3.
go back to reference Michel K, Kafatos FC: Mosquito immunity against Plasmodium. Insect Biochem Mol Biol. 2005, 35: 677-689. 10.1016/j.ibmb.2005.02.009.CrossRefPubMed Michel K, Kafatos FC: Mosquito immunity against Plasmodium. Insect Biochem Mol Biol. 2005, 35: 677-689. 10.1016/j.ibmb.2005.02.009.CrossRefPubMed
4.
go back to reference Collins FH, Zavala F, Graves PM, Cochrane AH, Gwadz RW, Akoh J, Nussenzweig RS: First field trial of an immunoradiometric assay for the detection of malaria sporozoites in mosquitoes. Am J Trop Med Hyg. 1984, 33: 538-543.PubMed Collins FH, Zavala F, Graves PM, Cochrane AH, Gwadz RW, Akoh J, Nussenzweig RS: First field trial of an immunoradiometric assay for the detection of malaria sporozoites in mosquitoes. Am J Trop Med Hyg. 1984, 33: 538-543.PubMed
5.
go back to reference Coleman RE, Polsa N, Eikarat N, Kollars TM, Sattabongkot J: Prevention of sporogony of Plasmodium vivax in Anopheles dirus mosquitoes by transmission-blocking antimalarials. Am J Trop Med Hyg. 2001, 65: 214-218.PubMed Coleman RE, Polsa N, Eikarat N, Kollars TM, Sattabongkot J: Prevention of sporogony of Plasmodium vivax in Anopheles dirus mosquitoes by transmission-blocking antimalarials. Am J Trop Med Hyg. 2001, 65: 214-218.PubMed
6.
go back to reference Osta MA, Christophides GK, Vlachou D, Kafatos FC: Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol. 2004, 207: 2551-2563. 10.1242/jeb.01066.CrossRefPubMed Osta MA, Christophides GK, Vlachou D, Kafatos FC: Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J Exp Biol. 2004, 207: 2551-2563. 10.1242/jeb.01066.CrossRefPubMed
7.
go back to reference Zieler H, Nawrocki JP, Shahabuddin M: Plasmodium gallinaceum ookinete adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. Exp Parasitol. 1999, 202: 485-495. Zieler H, Nawrocki JP, Shahabuddin M: Plasmodium gallinaceum ookinete adhere specifically to the midgut epithelium of Aedes aegypti by interaction with a carbohydrate ligand. Exp Parasitol. 1999, 202: 485-495.
8.
go back to reference Zieler H, Garon CF, Fischer ER, Shahabuddin M: A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes. Exp Parasitol. 2000, 203: 1599-1611. Zieler H, Garon CF, Fischer ER, Shahabuddin M: A tubular network associated with the brush-border surface of the Aedes aegypti midgut: implications for pathogen transmission by mosquitoes. Exp Parasitol. 2000, 203: 1599-1611.
9.
go back to reference Dinglasan RR, Jacobs-Lorena M: Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun. 2005, 73: 7797-7807. 10.1128/IAI.73.12.7797-7807.2005.PubMedCentralCrossRefPubMed Dinglasan RR, Jacobs-Lorena M: Insight into a conserved lifestyle: protein-carbohydrate adhesion strategies of vector-borne pathogens. Infect Immun. 2005, 73: 7797-7807. 10.1128/IAI.73.12.7797-7807.2005.PubMedCentralCrossRefPubMed
10.
go back to reference Dinglasan RR, Fields I, Shahabuddin M, Azad AF, Sacci JB: Monoclonal antibody MG96 completely blocks Plasmodium yoelii development in Anopheles stephensi. Infect Immun. 2003, 71: 6995-7001. 10.1128/IAI.71.12.6995-7001.2003.PubMedCentralCrossRefPubMed Dinglasan RR, Fields I, Shahabuddin M, Azad AF, Sacci JB: Monoclonal antibody MG96 completely blocks Plasmodium yoelii development in Anopheles stephensi. Infect Immun. 2003, 71: 6995-7001. 10.1128/IAI.71.12.6995-7001.2003.PubMedCentralCrossRefPubMed
11.
go back to reference Lal AA, Patterso PS, Sacci JB, Vaughan JA, Paul C, Collins WE, Wirtz RA, Azad AF: Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Proc Natl Acad Sci USA. 2001, 98: 5228-5223. 10.1073/pnas.091447398.PubMedCentralCrossRefPubMed Lal AA, Patterso PS, Sacci JB, Vaughan JA, Paul C, Collins WE, Wirtz RA, Azad AF: Anti-mosquito midgut antibodies block development of Plasmodium falciparum and Plasmodium vivax in multiple species of Anopheles mosquitoes and reduce vector fecundity and survivorship. Proc Natl Acad Sci USA. 2001, 98: 5228-5223. 10.1073/pnas.091447398.PubMedCentralCrossRefPubMed
12.
go back to reference Ramasamy MS, Kulasekera R, Wanniarachchi IC, Srikrishnaraj KA, Ramasamy R: Interactions of human malaria parasites, Plasmodium vivax and P. falciparum, with the midgut of Anopheles mosquitoes. Med Vet Entomol. 1997, 11: 290-296. 10.1111/j.1365-2915.1997.tb00409.x.CrossRefPubMed Ramasamy MS, Kulasekera R, Wanniarachchi IC, Srikrishnaraj KA, Ramasamy R: Interactions of human malaria parasites, Plasmodium vivax and P. falciparum, with the midgut of Anopheles mosquitoes. Med Vet Entomol. 1997, 11: 290-296. 10.1111/j.1365-2915.1997.tb00409.x.CrossRefPubMed
13.
go back to reference Basseri HR, Safari N, Mousakazemi SH, Akbarzadeh K: Comparison of midgut hemagglutination activity in three different geographical populations of An. stephensi. Iranian J Publ Health. 2004, 33: 60-67. Basseri HR, Safari N, Mousakazemi SH, Akbarzadeh K: Comparison of midgut hemagglutination activity in three different geographical populations of An. stephensi. Iranian J Publ Health. 2004, 33: 60-67.
14.
go back to reference Jafari S, Le Bras J, Asmar M, Durand R: Molecular survey of Plasmodium falciparum resistance in south-eastern Iran. Ann Trop Med Parasitol. 2006, 97: 119-124. 10.1179/000349803235001552.CrossRef Jafari S, Le Bras J, Asmar M, Durand R: Molecular survey of Plasmodium falciparum resistance in south-eastern Iran. Ann Trop Med Parasitol. 2006, 97: 119-124. 10.1179/000349803235001552.CrossRef
15.
go back to reference Dinparast Djadid N, Barjesteh H, Raeisi A, Hassanzahi A, Zakeri S: Identification, sequence analysis and comparative study on GSTe2 insecticide resistance gene in three main world malaria vectors: Anopheles stephensi, Anopheles culicifacies, and Anopheles fluviatilis. J Med Entomol. 2006, 43: 1171-1177. 10.1603/0022-2585(2006)43[1171:ISAACS]2.0.CO;2. Dinparast Djadid N, Barjesteh H, Raeisi A, Hassanzahi A, Zakeri S: Identification, sequence analysis and comparative study on GSTe2 insecticide resistance gene in three main world malaria vectors: Anopheles stephensi, Anopheles culicifacies, and Anopheles fluviatilis. J Med Entomol. 2006, 43: 1171-1177. 10.1603/0022-2585(2006)43[1171:ISAACS]2.0.CO;2.
16.
go back to reference Alavi YAM, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, Billker O, Franke-Fayard B, Janse CJ, Waters A, Sinden RE: The dynamics of interactions between Plasmodium and the mosquito. Int J Parasit. 2003, 33: 933-943. 10.1016/S0020-7519(03)00112-7.CrossRef Alavi YAM, Mendoza J, Tufet-Bayona M, Sinha R, Fowler K, Billker O, Franke-Fayard B, Janse CJ, Waters A, Sinden RE: The dynamics of interactions between Plasmodium and the mosquito. Int J Parasit. 2003, 33: 933-943. 10.1016/S0020-7519(03)00112-7.CrossRef
17.
go back to reference Chen C, Billingsley P: Detection and characterization of a mannan-binding lectin from mosquito, Anopheles stephensi (Liston). Eur J Biochem. 1999, 263: 360-366. 10.1046/j.1432-1327.1999.00513.x.CrossRefPubMed Chen C, Billingsley P: Detection and characterization of a mannan-binding lectin from mosquito, Anopheles stephensi (Liston). Eur J Biochem. 1999, 263: 360-366. 10.1046/j.1432-1327.1999.00513.x.CrossRefPubMed
18.
go back to reference Wilkins S, Billingsley P: Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston. Insect Biochem Mol Biol. 2001, 31: 937-948. 10.1016/S0965-1748(01)00040-6.CrossRefPubMed Wilkins S, Billingsley P: Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston. Insect Biochem Mol Biol. 2001, 31: 937-948. 10.1016/S0965-1748(01)00040-6.CrossRefPubMed
19.
go back to reference Mohamed HA, Ingram GA, Molyneux DH: Use of fluorescein labeled lectin binding of salivary glands to distinguish between Anopheles stephensi and An. albimanus species and strains. Insect Biochem. 1991, 21: 767-773. 10.1016/0020-1790(91)90118-X.CrossRef Mohamed HA, Ingram GA, Molyneux DH: Use of fluorescein labeled lectin binding of salivary glands to distinguish between Anopheles stephensi and An. albimanus species and strains. Insect Biochem. 1991, 21: 767-773. 10.1016/0020-1790(91)90118-X.CrossRef
20.
go back to reference Manouchehri AV, Javadian E, Eshighy N, Motabar M: Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976, 28: 228-232.PubMed Manouchehri AV, Javadian E, Eshighy N, Motabar M: Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976, 28: 228-232.PubMed
21.
go back to reference Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA: Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Malar J. 2006, 5: 68-10.1186/1475-2875-5-68.PubMedCentralCrossRef Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA: Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Malar J. 2006, 5: 68-10.1186/1475-2875-5-68.PubMedCentralCrossRef
22.
go back to reference Dinglasan RR, Valenzuela J, Azad AF: Sugar epitopes as potential universal disease transmission blocking targets. Insect Biochem Mol Biol. 2005, 35: 1-10. 10.1016/j.ibmb.2004.09.005.CrossRefPubMed Dinglasan RR, Valenzuela J, Azad AF: Sugar epitopes as potential universal disease transmission blocking targets. Insect Biochem Mol Biol. 2005, 35: 1-10. 10.1016/j.ibmb.2004.09.005.CrossRefPubMed
23.
go back to reference Rosenberg R: Inability of Plasmodium knowlesi sporozoites to invade Anopheles freeborni salivary glands. Am J Trop Med Hyg. 1985, 34: 687-691.PubMed Rosenberg R: Inability of Plasmodium knowlesi sporozoites to invade Anopheles freeborni salivary glands. Am J Trop Med Hyg. 1985, 34: 687-691.PubMed
24.
go back to reference Mohamed HA, Ingram GA: Salivary gland surface carbohydrate variations in three species of the Anopheles gambiae complex. Ann Soc Belge Med Trop. 1993, 73: 197-207. Mohamed HA, Ingram GA: Salivary gland surface carbohydrate variations in three species of the Anopheles gambiae complex. Ann Soc Belge Med Trop. 1993, 73: 197-207.
25.
go back to reference Okulate MA, Kalume DE, Reddy R, Kristiansen T, Bhattacharyya M, Chaerkady R, Pandey A, Kumar N: Identification and molecular characterization of a novel protein Saglin as a target of monoclonal antibodies affecting salivary gland infectivity of Plasmodium sporozoites. Insect Molec Biol. 2007, 16: 711-722.CrossRef Okulate MA, Kalume DE, Reddy R, Kristiansen T, Bhattacharyya M, Chaerkady R, Pandey A, Kumar N: Identification and molecular characterization of a novel protein Saglin as a target of monoclonal antibodies affecting salivary gland infectivity of Plasmodium sporozoites. Insect Molec Biol. 2007, 16: 711-722.CrossRef
Metadata
Title
Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle
Authors
Hamid R Basseri
Soghra Doosti
Kamran Akbarzadeh
Mehdi Nateghpour
Miranda MA Whitten
Hossein Ladoni
Publication date
01-12-2008
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2008
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/1475-2875-7-131

Other articles of this Issue 1/2008

Malaria Journal 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.