Skip to main content
Top
Published in: Journal of Translational Medicine 1/2018

Open Access 01-12-2018 | Research

Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum

Authors: Jiaqiang Ren, Dawn Ward, Steven Chen, Katherine Tran, Ping Jin, Marianna Sabatino, Pamela G. Robey, David F. Stroncek

Published in: Journal of Translational Medicine | Issue 1/2018

Login to get access

Abstract

Background

Bone marrow stromal cells (BMSCs) have classically been cultured in media supplemented with fetal bovine serum (FBS). As an alternative to FBS, pooled solvent detergent apheresis platelets, HPGF-C18, was evaluated for BMSC culture.

Methods

A comparison of passage 2 BMSC growth revealed that 10% HPGF-C18 produced similar cell numbers as 20% FBS. Marrow aspirates from 5 healthy subjects were cultured for 4 passages in 10% HPGF-C18 or 20% FBS and were analyzed for proliferation, colony formation efficiency (CFE), surface marker expression, suppression of mixed lymphocyte reactions (MLRs), global gene and microRNA expression analysis. BMSC supernatant cytokine and growth factor concentrations were also compared.

Results

Primary cultures of marrow aspirates in 10% HPGF-C18 and 20% FBS yielded similar numbers and CFE. After 4 passages, 10% HPGF-C18 and 20% FBS yielded similar numbers of BMSCs, surface marker expression patterns and immunosuppression effects. Gene and microRNA expression analysis revealed that BMSCs cultured under the two conditions had distinct expression profiles. Gene Set Enrichment Analysis (GSEA) revealed HPGF-C18-cultured BMSCs were enriched in metabolic processing and biosynthetic pathways, cell proliferation and cell cycle pathways, and immune response pathways. FBS-cultured BMSCs were enriched in MAPK signaling, TGF-beta signaling, cell adhesion and extracellular matrix pathways. Differently expressed microRNAs were related to the osteogenesis of BMSCs. The supernatant of HPGF-C18 BMSCs had higher levels of PEDF and TGFB1 and lower levels of IL6, VEGF, SDF1 and PLGF.

Conclusions

Traditional measures, expansion, surface marker expression and inhibition of MLRs suggest that BMSC cultured in HPGF-C18 and FBS were similar, but analysis at the molecular level revealed many differences. BMSCs cultured in HPGF-C18 should be assessed in specific functional assays that reflect application-specific potency before substituting FBS with HPGF-C18.
Literature
1.
go back to reference Kuznetsov SA, Mankani MH, Robey PG. In vivo formation of bone and haematopoietic territories by transplanted human bone marrow stromal cells generated in medium with and without osteogenic supplements. J Tissue Eng Regen Med. 2013;7(3):226–35.CrossRefPubMed Kuznetsov SA, Mankani MH, Robey PG. In vivo formation of bone and haematopoietic territories by transplanted human bone marrow stromal cells generated in medium with and without osteogenic supplements. J Tissue Eng Regen Med. 2013;7(3):226–35.CrossRefPubMed
2.
go back to reference Kuznetsov SA, et al. Long-term stable canine mandibular augmentation using autologous bone marrow stromal cells and hydroxyapatite/tricalcium phosphate. Biomaterials. 2008;29(31):4211–6.CrossRefPubMedPubMedCentral Kuznetsov SA, et al. Long-term stable canine mandibular augmentation using autologous bone marrow stromal cells and hydroxyapatite/tricalcium phosphate. Biomaterials. 2008;29(31):4211–6.CrossRefPubMedPubMedCentral
4.
go back to reference Yin F, et al. Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. Stem Cells. 2014;32(5):1278–88.CrossRefPubMedPubMedCentral Yin F, et al. Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses. Stem Cells. 2014;32(5):1278–88.CrossRefPubMedPubMedCentral
5.
go back to reference Duijvestein M, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59(12):1662–9.CrossRefPubMed Duijvestein M, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut. 2010;59(12):1662–9.CrossRefPubMed
6.
go back to reference Ciccocioppo R, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60(6):788–98.CrossRefPubMed Ciccocioppo R, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut. 2011;60(6):788–98.CrossRefPubMed
7.
8.
go back to reference Wilson JG, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32.CrossRefPubMed Wilson JG, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32.CrossRefPubMed
9.
go back to reference Menge T, et al. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med. 2012;4(161):161ra150.CrossRefPubMedPubMedCentral Menge T, et al. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med. 2012;4(161):161ra150.CrossRefPubMedPubMedCentral
10.
go back to reference Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.PubMed Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3(4):393–403.PubMed
11.
go back to reference Selvaggi TA, Walker RE, Fleisher TA. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood. 1997;89(3):776–9.PubMed Selvaggi TA, Walker RE, Fleisher TA. Development of antibodies to fetal calf serum with arthus-like reactions in human immunodeficiency virus-infected patients given syngeneic lymphocyte infusions. Blood. 1997;89(3):776–9.PubMed
12.
go back to reference Macy E, et al. Anaphylaxis to infusion of autologous bone marrow: an apparent reaction to self, mediated by IgE antibody to bovine serum albumin. J Allergy Clin Immunol. 1989;83(5):871–5.CrossRefPubMed Macy E, et al. Anaphylaxis to infusion of autologous bone marrow: an apparent reaction to self, mediated by IgE antibody to bovine serum albumin. J Allergy Clin Immunol. 1989;83(5):871–5.CrossRefPubMed
13.
go back to reference Mackensen A, et al. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother. 2000;49(3):152–6.CrossRefPubMed Mackensen A, et al. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol Immunother. 2000;49(3):152–6.CrossRefPubMed
14.
go back to reference Jonsdottir-Buch SM, Lieder R, Sigurjonsson OE. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLoS ONE. 2013;8(7):e68984.CrossRefPubMedPubMedCentral Jonsdottir-Buch SM, Lieder R, Sigurjonsson OE. Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells. PLoS ONE. 2013;8(7):e68984.CrossRefPubMedPubMedCentral
15.
go back to reference Griffiths S, et al. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro. Cytotherapy. 2013;15(12):1469–83.CrossRefPubMed Griffiths S, et al. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro. Cytotherapy. 2013;15(12):1469–83.CrossRefPubMed
16.
go back to reference Ben Azouna N, et al. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther. 2012;3(1):6.CrossRefPubMed Ben Azouna N, et al. Phenotypical and functional characteristics of mesenchymal stem cells from bone marrow: comparison of culture using different media supplemented with human platelet lysate or fetal bovine serum. Stem Cell Res Ther. 2012;3(1):6.CrossRefPubMed
17.
go back to reference Bieback K, et al. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells. 2009;27(9):2331–41.CrossRefPubMed Bieback K, et al. Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells. 2009;27(9):2331–41.CrossRefPubMed
18.
go back to reference Schallmoser K, et al. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion. 2007;47(8):1436–46.CrossRefPubMed Schallmoser K, et al. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfusion. 2007;47(8):1436–46.CrossRefPubMed
19.
go back to reference Lange C, et al. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol. 2007;213(1):18–26.CrossRefPubMed Lange C, et al. Accelerated and safe expansion of human mesenchymal stromal cells in animal serum-free medium for transplantation and regenerative medicine. J Cell Physiol. 2007;213(1):18–26.CrossRefPubMed
20.
go back to reference Bieback K, et al. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements. Tissue Eng Part A. 2010;16(11):3467–84.CrossRefPubMed Bieback K, et al. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements. Tissue Eng Part A. 2010;16(11):3467–84.CrossRefPubMed
21.
go back to reference Chou ML, et al. Impact of solvent/detergent treatment of plasma on transfusion-relevant bacteria. Vox Sang. 2012;102(4):277–84.CrossRefPubMed Chou ML, et al. Impact of solvent/detergent treatment of plasma on transfusion-relevant bacteria. Vox Sang. 2012;102(4):277–84.CrossRefPubMed
23.
go back to reference Shih DT, et al. Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion. 2011;51(4):770–8.CrossRefPubMed Shih DT, et al. Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion. 2011;51(4):770–8.CrossRefPubMed
24.
go back to reference Ren J, et al. Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: molecular changes associated with BMSC senescence. Stem Cell Res. 2013;11(3):1060–73.CrossRefPubMed Ren J, et al. Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: molecular changes associated with BMSC senescence. Stem Cell Res. 2013;11(3):1060–73.CrossRefPubMed
26.
go back to reference Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.CrossRefPubMedPubMedCentral Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.CrossRefPubMedPubMedCentral
27.
go back to reference Ylostalo JH, et al. Unique characteristics of human mesenchymal stromal/progenitor cells pre-activated in 3-dimensional cultures under different conditions. Cytotherapy. 2014;16(11):1486–500.CrossRefPubMedPubMedCentral Ylostalo JH, et al. Unique characteristics of human mesenchymal stromal/progenitor cells pre-activated in 3-dimensional cultures under different conditions. Cytotherapy. 2014;16(11):1486–500.CrossRefPubMedPubMedCentral
28.
go back to reference Ho IA, et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009;27(6):1366–75.CrossRefPubMedPubMedCentral Ho IA, et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells. 2009;27(6):1366–75.CrossRefPubMedPubMedCentral
29.
go back to reference Huszar JM, Payne CJ. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014;588(9):1850–6.CrossRefPubMedPubMedCentral Huszar JM, Payne CJ. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett. 2014;588(9):1850–6.CrossRefPubMedPubMedCentral
30.
go back to reference Xu S, et al. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS ONE. 2013;8(11):e79752.CrossRefPubMedPubMedCentral Xu S, et al. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS ONE. 2013;8(11):e79752.CrossRefPubMedPubMedCentral
31.
go back to reference Schaap-Oziemlak AM, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 2010;19(6):877–85.CrossRefPubMed Schaap-Oziemlak AM, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 2010;19(6):877–85.CrossRefPubMed
32.
go back to reference You L, et al. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2014;7(10):7249–61.PubMedPubMedCentral You L, et al. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2014;7(10):7249–61.PubMedPubMedCentral
33.
go back to reference Zhang J, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26(8):1953–63.CrossRefPubMed Zhang J, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26(8):1953–63.CrossRefPubMed
34.
go back to reference Tome M, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011;18(6):985–95.CrossRefPubMed Tome M, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ. 2011;18(6):985–95.CrossRefPubMed
35.
go back to reference Lin X, et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res. 2014;29(7):1575–85.CrossRefPubMed Lin X, et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res. 2014;29(7):1575–85.CrossRefPubMed
36.
go back to reference Xu J, et al. miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation. Sci China Life Sci. 2014;57(10):989–97.CrossRefPubMed Xu J, et al. miR-210 over-expression enhances mesenchymal stem cell survival in an oxidative stress environment through antioxidation and c-Met pathway activation. Sci China Life Sci. 2014;57(10):989–97.CrossRefPubMed
37.
go back to reference Brindley DA, et al. Peak serum: implications of serum supply for cell therapy manufacturing. Regen Med. 2012;7(1):7–13.CrossRefPubMed Brindley DA, et al. Peak serum: implications of serum supply for cell therapy manufacturing. Regen Med. 2012;7(1):7–13.CrossRefPubMed
38.
go back to reference Su CY, et al. A virally inactivated functional growth factor preparation from human platelet concentrates. Vox Sang. 2009;97(2):119–28.CrossRefPubMed Su CY, et al. A virally inactivated functional growth factor preparation from human platelet concentrates. Vox Sang. 2009;97(2):119–28.CrossRefPubMed
Metadata
Title
Comparison of human bone marrow stromal cells cultured in human platelet growth factors and fetal bovine serum
Authors
Jiaqiang Ren
Dawn Ward
Steven Chen
Katherine Tran
Ping Jin
Marianna Sabatino
Pamela G. Robey
David F. Stroncek
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2018
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1400-3

Other articles of this Issue 1/2018

Journal of Translational Medicine 1/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.