Skip to main content
Top
Published in: European Radiology 6/2014

01-06-2014 | Magnetic Resonance

Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

Authors: Marica Cutajar, David L. Thomas, Patrick W. Hales, T. Banks, Christopher A. Clark, Isky Gordon

Published in: European Radiology | Issue 6/2014

Login to get access

Abstract

Objectives

To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF).

Methods

Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods.

Results

The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min−1 [100 ml tissue]−1, and using DCE MRI was 287 ± 70 ml min−1 [100 ml tissue]−1. The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement.

Conclusions

The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques.

Key Points

Reliable non-invasive monitoring of renal blood flow is currently clinically unavailable.
Renal arterial spin labelling MRI is robust and repeatable.
Renal dynamic contrast-enhanced MRI is robust and repeatable.
ASL blood flow values are similar to those obtained using DCE-MRI.
Literature
1.
go back to reference Peters AM, Brown J, Hartnell GG, Myers MJ, Haskell C, Lavender JP (1987) Non-invasive measurement of renal blood flow with 99mTc DTPA: comparison with radiolabelled microspheres. Cardiovasc Res 21:830–834PubMedCrossRef Peters AM, Brown J, Hartnell GG, Myers MJ, Haskell C, Lavender JP (1987) Non-invasive measurement of renal blood flow with 99mTc DTPA: comparison with radiolabelled microspheres. Cardiovasc Res 21:830–834PubMedCrossRef
2.
go back to reference Haufe SE, Riedmuller K, Haberkorn U (2006) Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin Pract 103:c77–c84PubMedCrossRef Haufe SE, Riedmuller K, Haberkorn U (2006) Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin Pract 103:c77–c84PubMedCrossRef
3.
go back to reference Miles KA (1991) Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 64:409–412PubMedCrossRef Miles KA (1991) Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 64:409–412PubMedCrossRef
4.
go back to reference Annet L, Hermoye L, Peeters F, Jamar F, Dehoux JP, Van Beers BE (2004) Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 20:843–849PubMedCrossRef Annet L, Hermoye L, Peeters F, Jamar F, Dehoux JP, Van Beers BE (2004) Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging 20:843–849PubMedCrossRef
5.
go back to reference Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123PubMedCrossRef Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging 24:1117–1123PubMedCrossRef
6.
go back to reference Sourbron S, Dujardin M, Makkat S, Luypaert R (2007) Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52:429–447PubMedCrossRef Sourbron S, Dujardin M, Makkat S, Luypaert R (2007) Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation. Phys Med Biol 52:429–447PubMedCrossRef
7.
go back to reference Tofts PS, Cutajar M, Mendichovszky IA, Peters AM, Gordon I (2012) Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur Radiol 22:1320–1330PubMedCrossRef Tofts PS, Cutajar M, Mendichovszky IA, Peters AM, Gordon I (2012) Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur Radiol 22:1320–1330PubMedCrossRef
9.
go back to reference Mendichovszky IA, Cutajar M, Gordon I (2009) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576–581PubMedCrossRef Mendichovszky IA, Cutajar M, Gordon I (2009) Reproducibility of the aortic input function (AIF) derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of the kidneys in a volunteer study. Eur J Radiol 71:576–581PubMedCrossRef
10.
go back to reference Cutajar M, Mendichovszky IA, Tofts PS, Gordon I (2010) The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160PubMedCrossRef Cutajar M, Mendichovszky IA, Tofts PS, Gordon I (2010) The importance of AIF ROI selection in DCE-MRI renography: reproducibility and variability of renal perfusion and filtration. Eur J Radiol 74:e154–e160PubMedCrossRef
11.
go back to reference Garpebring A, Wirestam R, Ostlund N, Karlsson M (2011) Effects of inflow and radiofrequency spoiling on the arterial input function in dynamic contrast-enhanced MRI: a combined phantom and simulation study. Magn Reson Med 65:1670–1679PubMedCrossRef Garpebring A, Wirestam R, Ostlund N, Karlsson M (2011) Effects of inflow and radiofrequency spoiling on the arterial input function in dynamic contrast-enhanced MRI: a combined phantom and simulation study. Magn Reson Med 65:1670–1679PubMedCrossRef
12.
go back to reference Mendichovszky I, Pedersen M, Frokiaer J, Dissing T, Grenier N, Anderson P et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931PubMedCrossRef Mendichovszky I, Pedersen M, Frokiaer J, Dissing T, Grenier N, Anderson P et al (2008) How accurate is dynamic contrast-enhanced MRI in the assessment of renal glomerular filtration rate? A critical appraisal. J Magn Reson Imaging 27:925–931PubMedCrossRef
13.
go back to reference Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27PubMedCrossRef Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27PubMedCrossRef
14.
go back to reference Petersen ET, Zimine I, Ho YC, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701PubMedCrossRef Petersen ET, Zimine I, Ho YC, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79:688–701PubMedCrossRef
15.
go back to reference Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A et al (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29:74–82PubMedCentralPubMedCrossRef Artz NS, Sadowski EA, Wentland AL, Grist TM, Seo S, Djamali A et al (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29:74–82PubMedCentralPubMedCrossRef
16.
go back to reference De BC, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma (1). Acad Radiol 12:347–357CrossRef De BC, Rofsky NM, Duhamel G, Michaelson MD, George D, Alsop DC (2005) Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma (1). Acad Radiol 12:347–357CrossRef
17.
go back to reference Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Imaging 63:1627–1636 Gardener AG, Francis ST (2010) Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Magn Reson Imaging 63:1627–1636
18.
go back to reference Karger N, Biederer J, Lusse S, Grimm J, Steffens J, Heller M et al (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647PubMedCrossRef Karger N, Biederer J, Lusse S, Grimm J, Steffens J, Heller M et al (2000) Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 18:641–647PubMedCrossRef
19.
go back to reference Lanzman RS, Wittsack HJ, Martirosian P, Zgoura P, Bilk P, Kropil P et al (2010) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20:1485–1491PubMedCrossRef Lanzman RS, Wittsack HJ, Martirosian P, Zgoura P, Bilk P, Kropil P et al (2010) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20:1485–1491PubMedCrossRef
20.
go back to reference Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder NI et al (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021PubMedCrossRef Fenchel M, Martirosian P, Langanke J, Giersch J, Miller S, Stauder NI et al (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238:1013–1021PubMedCrossRef
21.
go back to reference Pedrosa I, Alsop DC, Rofsky NM (2009) Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer 115:2334–2345PubMedCrossRef Pedrosa I, Alsop DC, Rofsky NM (2009) Magnetic resonance imaging as a biomarker in renal cell carcinoma. Cancer 115:2334–2345PubMedCrossRef
22.
go back to reference Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361PubMedCrossRef Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51:353–361PubMedCrossRef
23.
go back to reference Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301PubMedCrossRef Kim SG (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 34:293–301PubMedCrossRef
24.
go back to reference Gunther M, Oshio K, Feinberg DA (2005) Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 54:491–498PubMedCrossRef Gunther M, Oshio K, Feinberg DA (2005) Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 54:491–498PubMedCrossRef
25.
go back to reference Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396PubMedCrossRef Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 40:383–396PubMedCrossRef
26.
go back to reference MacIntosh BJ, Lindsay AC, Kylintireas I, Kuker W, Gunther M, Robson MD et al (2010) Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 31:1892–1894PubMedCrossRef MacIntosh BJ, Lindsay AC, Kylintireas I, Kuker W, Gunther M, Robson MD et al (2010) Multiple inflow pulsed arterial spin-labeling reveals delays in the arterial arrival time in minor stroke and transient ischemic attack. AJNR Am J Neuroradiol 31:1892–1894PubMedCrossRef
27.
go back to reference Winter JD, St Lawrence KS, Cheng HL (2011) Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:608–615PubMedCrossRef Winter JD, St Lawrence KS, Cheng HL (2011) Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:608–615PubMedCrossRef
28.
go back to reference Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261:845–853PubMedCrossRef Wu WC, Su MY, Chang CC, Tseng WY, Liu KL (2011) Renal perfusion 3-T MR imaging: a comparative study of arterial spin labeling and dynamic contrast-enhanced techniques. Radiology 261:845–853PubMedCrossRef
29.
go back to reference Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK et al (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8:e53849PubMedCentralPubMedCrossRef Zimmer F, Zollner FG, Hoeger S, Klotz S, Tsagogiorgas C, Kramer BK et al (2013) Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3T: testing inter- and intramethodical significance of ASL and DCE-MRI. PLoS One 8:e53849PubMedCentralPubMedCrossRef
30.
go back to reference Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K et al (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159PubMedCrossRef Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K et al (1999) Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:146–159PubMedCrossRef
31.
go back to reference Piepsz A, Blaufox MD, Gordon I, Granerus G, Majd M, O'Reilly P et al (1999) Consensus on renal cortical scintigraphy in children with urinary tract infection. Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:160–174PubMedCrossRef Piepsz A, Blaufox MD, Gordon I, Granerus G, Majd M, O'Reilly P et al (1999) Consensus on renal cortical scintigraphy in children with urinary tract infection. Scientific Committee of Radionuclides in Nephrourology. Semin Nucl Med 29:160–174PubMedCrossRef
32.
go back to reference Ye FQ, Frank JA, Weinberger DR, McLaughlin AC (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44:92–100PubMedCrossRef Ye FQ, Frank JA, Weinberger DR, McLaughlin AC (2000) Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 44:92–100PubMedCrossRef
33.
go back to reference Sourbron S, Biffar A, Ingrisch M, Fierens Y, Luypaert R (2009) PMI platform for research in medical imaging. MAGMA 22:539, Abstract Sourbron S, Biffar A, Ingrisch M, Fierens Y, Luypaert R (2009) PMI platform for research in medical imaging. MAGMA 22:539, Abstract
34.
go back to reference Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMedCrossRef
35.
go back to reference Tofts PS (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease. John Wiley, Chichester, p 63 Tofts PS (ed) (2003) Quantitative MRI of the brain: measuring changes caused by disease. John Wiley, Chichester, p 63
36.
go back to reference Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 25:145–153PubMedCrossRef Cutajar M, Thomas DL, Banks T, Clark CA, Golay X, Gordon I (2012) Repeatability of renal arterial spin labelling MRI in healthy subjects. MAGMA 25:145–153PubMedCrossRef
37.
go back to reference Zhang JL, Rusinek H, Bokacheva L, Chen Q, Storey P, Lee VS (2009) Use of cardiac output to improve measurement of input function in quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:656–665PubMedCentralPubMedCrossRef Zhang JL, Rusinek H, Bokacheva L, Chen Q, Storey P, Lee VS (2009) Use of cardiac output to improve measurement of input function in quantitative dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:656–665PubMedCentralPubMedCrossRef
38.
go back to reference Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 48:27–41PubMedCrossRef Parkes LM, Tofts PS (2002) Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 48:27–41PubMedCrossRef
39.
go back to reference Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254PubMedCrossRef Luh WM, Wong EC, Bandettini PA, Hyde JS (1999) QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 41:1246–1254PubMedCrossRef
Metadata
Title
Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility
Authors
Marica Cutajar
David L. Thomas
Patrick W. Hales
T. Banks
Christopher A. Clark
Isky Gordon
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 6/2014
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3130-0

Other articles of this Issue 6/2014

European Radiology 6/2014 Go to the issue