Skip to main content
Top
Published in: BMC Infectious Diseases 1/2017

Open Access 01-12-2017 | Research article

Comparison of a novel microcrystalline tyrosine adjuvant with aluminium hydroxide for enhancing vaccination against seasonal influenza

Authors: M. D Heath, N. J. Swan, A. C. Marriott, N. J. Silman, B. Hallis, C. Prevosto, K. E. Gooch, M. A. Skinner

Published in: BMC Infectious Diseases | Issue 1/2017

Login to get access

Abstract

Background

Vaccination against seasonal influenza strains is recommended for “high risk” patient groups such as infants, elderly and those with respiratory or circulatory diseases. However, efficacy of the trivalent influenza vaccine (TIV) is poor in many cases and in the event of an influenza pandemic, mono-valent vaccines have been rapidly developed and deployed. One of the main issues with use of vaccine in pandemic situations is the lack of a suitable quantity of vaccine early enough during the pandemic to exert a major influence on the transmission of virus and disease outcome. One approach is to use a dose-sparing regimen which inevitably involves enhancing the efficacy using adjuvants.

Methods

In this study we compare the use of a novel microcrystalline tyrosine (MCT) adjuvant, which is currently used in a niche area of allergy immunotherapy, for its ability to enhance the efficacy of a seasonal TIV preparation. The efficacy of the MCT adjuvant formulation was compared to alum adjuvanted TIV and to TIV administered without adjuvant using a ferret challenge model to determine vaccine efficacy.

Results

The MCT was found to possess high protein-binding capacity. In the two groups where TIV was formulated with adjuvant, the immune response was found to be higher (as determined by HAI titre) than vaccine administered without adjuvant and especially so after challenge with a live influenza virus. Vaccinated animals exhibited lower viral loads (as determined using RT-PCR) than control animals where no vaccine was administered.

Conclusions

The attributes of each adjuvant in stimulating single-dose protection against a poorly immunogenic vaccine was demonstrated. The properties of MCT that lead to the reported effectiveness warrants further exploration in this and other vaccine targets - particularly where appropriate immunogenic, biodegradable and stable alternative adjuvants are sought.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shanta M, Zimmer MD, Burke DS. Historical Perspective — Emergence of Influenza A (H1N1) Viruses. NEJM. 2009;361:279–85.CrossRef Shanta M, Zimmer MD, Burke DS. Historical Perspective — Emergence of Influenza A (H1N1) Viruses. NEJM. 2009;361:279–85.CrossRef
2.
go back to reference McGeogh D, Fellner P, Newton C. Influenza virus genome consists of eight distinct RNA species. Proc Natl Acad Sci U S A. 1976;73:3045–9.CrossRef McGeogh D, Fellner P, Newton C. Influenza virus genome consists of eight distinct RNA species. Proc Natl Acad Sci U S A. 1976;73:3045–9.CrossRef
3.
go back to reference Cox NJ, Subbarao K. Global epidemiology of influenza: Past and present. Annu Rev Med. 2000;51:407–21.CrossRefPubMed Cox NJ, Subbarao K. Global epidemiology of influenza: Past and present. Annu Rev Med. 2000;51:407–21.CrossRefPubMed
4.
go back to reference Khandaker I, Suzuki A, Kamigaki T, Tohma K, Odagiri T, Okada T, et al. Molecular evolution of the hemagglutinin and neuraminidase genes of pandemic (H1N1) 2009 influenza viruses in Sendai, Japan, during 2009-2011. Virus Genes. 2013;47:456–66.CrossRefPubMedCentral Khandaker I, Suzuki A, Kamigaki T, Tohma K, Odagiri T, Okada T, et al. Molecular evolution of the hemagglutinin and neuraminidase genes of pandemic (H1N1) 2009 influenza viruses in Sendai, Japan, during 2009-2011. Virus Genes. 2013;47:456–66.CrossRefPubMedCentral
7.
go back to reference Gilca R, Skowronski DM, Douville-Fradet M, et al. Mid-season estimates of influenza vaccine effectiveness against influenza A (H3N2) hospitalization in the elderly in Quebec, Canada, January 2015. PLoS One. 2015;10(7):e0132195. Gilca R, Skowronski DM, Douville-Fradet M, et al. Mid-season estimates of influenza vaccine effectiveness against influenza A (H3N2) hospitalization in the elderly in Quebec, Canada, January 2015. PLoS One. 2015;10(7):e0132195.
8.
go back to reference Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25:6852–62.CrossRefPubMed Carrat F, Flahault A. Influenza vaccine: the challenge of antigenic drift. Vaccine. 2007;25:6852–62.CrossRefPubMed
9.
go back to reference Cowling BJ, Feng S, Finelli L, Steffens A, Fowlkes A. Assessment of influenza vaccine effectiveness in a sentinel surveillance network 2010–13. United States Vaccine. 2016;34:61–6.PubMed Cowling BJ, Feng S, Finelli L, Steffens A, Fowlkes A. Assessment of influenza vaccine effectiveness in a sentinel surveillance network 2010–13. United States Vaccine. 2016;34:61–6.PubMed
10.
go back to reference Rockman S, Middleton DJ, Pearse MJ, Barr IG, Lowther S, Brown LE. Control of pandemic (H1N1) 2009 influenza virus infection of ferret lungs by non-adjuvant-containing pandemic and seasonal vaccines. Vaccine. 2012;30:3618–23.CrossRefPubMed Rockman S, Middleton DJ, Pearse MJ, Barr IG, Lowther S, Brown LE. Control of pandemic (H1N1) 2009 influenza virus infection of ferret lungs by non-adjuvant-containing pandemic and seasonal vaccines. Vaccine. 2012;30:3618–23.CrossRefPubMed
11.
go back to reference Park S-J, Kim E-H, Pascua PNQ, Kwon H-I, Lim G-J, Decano A, et al. Evaluation of heterosubtypic cross-protection against highly pathogenic H5N1 by active infection with human seasonal influenza A virus or trivalent inactivated vaccine immunization in ferret models. J Gen Virol. 2014;95:793–8.CrossRefPubMed Park S-J, Kim E-H, Pascua PNQ, Kwon H-I, Lim G-J, Decano A, et al. Evaluation of heterosubtypic cross-protection against highly pathogenic H5N1 by active infection with human seasonal influenza A virus or trivalent inactivated vaccine immunization in ferret models. J Gen Virol. 2014;95:793–8.CrossRefPubMed
12.
go back to reference Laurie KL, Carolan LA, Middleton D, Lowther S, Kelso A, Barr IG. Multiple infections with seasonal influenza A virus induce cross-protective immunity against A(H1N1) pandemic influenza virus in a ferret model. J Infect Dis. 2010;202:1011–20.CrossRefPubMed Laurie KL, Carolan LA, Middleton D, Lowther S, Kelso A, Barr IG. Multiple infections with seasonal influenza A virus induce cross-protective immunity against A(H1N1) pandemic influenza virus in a ferret model. J Infect Dis. 2010;202:1011–20.CrossRefPubMed
13.
go back to reference Baras B, de Waal L, Stittelaar KJ, Jacob V, Giannini S, Kroeze EJBV, et al. Pandemic H1N1 vaccine requires the use of an adjuvant to protect against challenge in naïve ferrets. Vaccine. 2011;29:2120–6.CrossRefPubMed Baras B, de Waal L, Stittelaar KJ, Jacob V, Giannini S, Kroeze EJBV, et al. Pandemic H1N1 vaccine requires the use of an adjuvant to protect against challenge in naïve ferrets. Vaccine. 2011;29:2120–6.CrossRefPubMed
14.
go back to reference Gregorio EG, Rappuoli R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol. 2014;14:505–14.CrossRefPubMed Gregorio EG, Rappuoli R. From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol. 2014;14:505–14.CrossRefPubMed
16.
go back to reference Chia M-Y, Hu AY-C, Tseng Y-F, Weng T-C, Lai C-C, Lin J-Y, et al. Evaluation of MDCK Cell-Derived Influenza H7N9 Vaccine Candidates in Ferrets. PLoS One. 2015;10 Chia M-Y, Hu AY-C, Tseng Y-F, Weng T-C, Lai C-C, Lin J-Y, et al. Evaluation of MDCK Cell-Derived Influenza H7N9 Vaccine Candidates in Ferrets. PLoS One. 2015;10
17.
go back to reference Pillet S, Racine T, Nfon C, Di Lenardo TZ, Babiuk S, Ward BJ, et al. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 2015;33:6282–9.CrossRefPubMed Pillet S, Racine T, Nfon C, Di Lenardo TZ, Babiuk S, Ward BJ, et al. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets. Vaccine. 2015;33:6282–9.CrossRefPubMed
18.
go back to reference Clegg CH, Roque R, Van Hoeven N, Perrone L, Baldwin SL, Rininger JA, et al. Adjuvant solution for pandemic influenza vaccine production. Proc Natl Acad Sci U S A. 2012;109:17585–90.CrossRefPubMedPubMedCentral Clegg CH, Roque R, Van Hoeven N, Perrone L, Baldwin SL, Rininger JA, et al. Adjuvant solution for pandemic influenza vaccine production. Proc Natl Acad Sci U S A. 2012;109:17585–90.CrossRefPubMedPubMedCentral
19.
go back to reference Baldrick P, Richardson D, Wheeler AW. Review of L-tyrosine confirming its safe human use as an adjuvant. J Appl Toxicol. 2002;22:333–44.CrossRefPubMed Baldrick P, Richardson D, Wheeler AW. Review of L-tyrosine confirming its safe human use as an adjuvant. J Appl Toxicol. 2002;22:333–44.CrossRefPubMed
20.
go back to reference Rosewich M, Lee D, Zielen S. Pollinex Quattro: an innovative four injections immunotherapy in allergic rhinitis. Hum Vaccin Immunother. 2013;9:1523–31.CrossRefPubMed Rosewich M, Lee D, Zielen S. Pollinex Quattro: an innovative four injections immunotherapy in allergic rhinitis. Hum Vaccin Immunother. 2013;9:1523–31.CrossRefPubMed
21.
go back to reference Wheeler AW, Moran DM, Robins BE, Driscoll A. L-Tyrosine as an Immunological Adjuvant. Int Arch Allergy Immunol. 1982;69:113–9.CrossRef Wheeler AW, Moran DM, Robins BE, Driscoll A. L-Tyrosine as an Immunological Adjuvant. Int Arch Allergy Immunol. 1982;69:113–9.CrossRef
22.
go back to reference Bell AJ, Heath MD, Hewings SJ, Skinner MA. The adsorption of allergoids and 3-O-desacyl-4′-monophosphoryl lipid A (MPL®) to microcrystalline tyrosine (MCT) in formulations for use in allergy immunotherapy. J Inorg Biochem. 2015;152:147–53.CrossRefPubMed Bell AJ, Heath MD, Hewings SJ, Skinner MA. The adsorption of allergoids and 3-O-desacyl-4′-monophosphoryl lipid A (MPL®) to microcrystalline tyrosine (MCT) in formulations for use in allergy immunotherapy. J Inorg Biochem. 2015;152:147–53.CrossRefPubMed
23.
go back to reference DuBuske LM1, Frew AJ, Horak F, Keith PK, Corrigan CJ, Aberer W, Holdich T, von Weikersthal-Drachenberg KJ.Ultrashort-specific immunotherapy successfully treats seasonal allergic rhinoconjunctivitis to grass pollen. Allergy Asthma Proc. 2011;32(3):239–47. DuBuske LM1, Frew AJ, Horak F, Keith PK, Corrigan CJ, Aberer W, Holdich T, von Weikersthal-Drachenberg KJ.Ultrashort-specific immunotherapy successfully treats seasonal allergic rhinoconjunctivitis to grass pollen. Allergy Asthma Proc. 2011;32(3):239–47. 
25.
go back to reference Marriott AC, Dove BK, Whittaker CJ, Bruce C, Ryan KA, Bean TJ, Rayner E, Pearson G, Taylor I, Dowall S, Plank J, Newman E, Barclay WS, Dimmock NJ, Easton AJ, Hallis B, Silman NJ, Carroll MW. Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir. PLoS One. 2014;9 Marriott AC, Dove BK, Whittaker CJ, Bruce C, Ryan KA, Bean TJ, Rayner E, Pearson G, Taylor I, Dowall S, Plank J, Newman E, Barclay WS, Dimmock NJ, Easton AJ, Hallis B, Silman NJ, Carroll MW. Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir. PLoS One. 2014;9
26.
go back to reference Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed
27.
go back to reference Scherliess R, Ajmera A, Dennis M, Carroll MW, Altrichter J, Silman NJ, Scholz M, Kemter K, Marriott AC. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates. Vaccine. 2014;32:2231–40.CrossRefPubMed Scherliess R, Ajmera A, Dennis M, Carroll MW, Altrichter J, Silman NJ, Scholz M, Kemter K, Marriott AC. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates. Vaccine. 2014;32:2231–40.CrossRefPubMed
28.
go back to reference Small PA, Waldman RH, Bruno JC, Gifford GE. Influenza infection in ferrets: role of serum antibody in protection and recovery. Infect Immun. 1976;13:417–24.PubMedPubMedCentral Small PA, Waldman RH, Bruno JC, Gifford GE. Influenza infection in ferrets: role of serum antibody in protection and recovery. Infect Immun. 1976;13:417–24.PubMedPubMedCentral
29.
go back to reference de Jong JC, Palache AM, Beyer WE, Rimmelzwaan GF, Boon AC, Osterhaus AD. Haemagglutination-inhibiting antibody to influenza virus. Dev Biol (Basel). 2003;115:63–73. de Jong JC, Palache AM, Beyer WE, Rimmelzwaan GF, Boon AC, Osterhaus AD. Haemagglutination-inhibiting antibody to influenza virus. Dev Biol (Basel). 2003;115:63–73.
31.
go back to reference van der Laan JW, Herberts C, Lambkin-Williams R, Boyers A, Mann AJ, Oxford J. Animal models in influenza vaccine testing. Expert Rev. Vaccines. 2008;7:783–93.CrossRefPubMed van der Laan JW, Herberts C, Lambkin-Williams R, Boyers A, Mann AJ, Oxford J. Animal models in influenza vaccine testing. Expert Rev. Vaccines. 2008;7:783–93.CrossRefPubMed
33.
go back to reference Khong H, Sharma M, Dai Z, Singh M, Hailemichael Y, Overwijk W. L-tyrosine is a promising cancer vaccine adjuvant. J ImmunoTherapy of Cancer. 2015;3(2):1–1. Khong H, Sharma M, Dai Z, Singh M, Hailemichael Y, Overwijk W. L-tyrosine is a promising cancer vaccine adjuvant. J ImmunoTherapy of Cancer. 2015;3(2):1–1.
34.
go back to reference Clapp T, Siebert P, Chen D, Jones BL. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci. 2011;100:388–401.CrossRefPubMed Clapp T, Siebert P, Chen D, Jones BL. Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci. 2011;100:388–401.CrossRefPubMed
35.
36.
go back to reference WHO Expert Committee on Biological Standardization Sixty-third report. Recommendations to assure the quality, safety and efficacy of tetanus vaccines (adsorbed) Replacement of Annex 2 of WHO Technical Report Series, No. 800, and Annex 5 of WHO Technical Report Series, No. 927. WHO Expert Committee on Biological Standardization Sixty-third report. Recommendations to assure the quality, safety and efficacy of tetanus vaccines (adsorbed) Replacement of Annex 2 of WHO Technical Report Series, No. 800, and Annex 5 of WHO Technical Report Series, No. 927.
37.
go back to reference O’Hagan DT, Fox CB. New generation adjuvants – From empiricism to rational design. Vaccine. 2015:B14–20. O’Hagan DT, Fox CB. New generation adjuvants – From empiricism to rational design. Vaccine. 2015:B14–20.
38.
go back to reference Dimmock NJ, Dove BK, Scott PD, Meng B, Taylor I, Cheung L, Hallis B, Marriott AC, Carroll M, Easton AJ. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established. PLoS One. 2012;7:e49394.CrossRefPubMedPubMedCentral Dimmock NJ, Dove BK, Scott PD, Meng B, Taylor I, Cheung L, Hallis B, Marriott AC, Carroll M, Easton AJ. Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established. PLoS One. 2012;7:e49394.CrossRefPubMedPubMedCentral
39.
go back to reference Dimmock NJ, Dove BK, Meng B, Scott PD, Taylor I, Cheung L, Hallis B, Marriott AC, Carroll MW, Easton AJ. Comparison of the protection of ferrets against pandemic 2009 influenza A virus (H1N1) by 244 DI influenza virus and oseltamivir. Antivir Res. 2012;96:376–85.CrossRefPubMedPubMedCentral Dimmock NJ, Dove BK, Meng B, Scott PD, Taylor I, Cheung L, Hallis B, Marriott AC, Carroll MW, Easton AJ. Comparison of the protection of ferrets against pandemic 2009 influenza A virus (H1N1) by 244 DI influenza virus and oseltamivir. Antivir Res. 2012;96:376–85.CrossRefPubMedPubMedCentral
40.
go back to reference Potter CW, Shore SL, McLaren C, Stuart-Harris C. Immunity to influenza in ferrets. II. Influence of adjuvants on immunization. Br J Exp Pathol. 1972;53:168–79.PubMedPubMedCentral Potter CW, Shore SL, McLaren C, Stuart-Harris C. Immunity to influenza in ferrets. II. Influence of adjuvants on immunization. Br J Exp Pathol. 1972;53:168–79.PubMedPubMedCentral
41.
go back to reference Podda A. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine. 2001;21:2673–80.CrossRef Podda A. The adjuvanted influenza vaccines with novel adjuvants: experience with the MF59-adjuvanted vaccine. Vaccine. 2001;21:2673–80.CrossRef
42.
go back to reference O'Hagan DT, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine. 2012;30(29):4341–8.CrossRefPubMed O'Hagan DT, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine. 2012;30(29):4341–8.CrossRefPubMed
43.
go back to reference Roman F, Vaman T, Gerlach B, Markendorf A, Gillard P, Devaster JM. Immunogenicity and safety in adults of one dose of influenza A H1N1v 2009 vaccine formulated with and without AS03A-adjuvant: preliminary report of an observer-blind, randomised trial. Vaccine. 2010;28(7):1740–5.CrossRefPubMed Roman F, Vaman T, Gerlach B, Markendorf A, Gillard P, Devaster JM. Immunogenicity and safety in adults of one dose of influenza A H1N1v 2009 vaccine formulated with and without AS03A-adjuvant: preliminary report of an observer-blind, randomised trial. Vaccine. 2010;28(7):1740–5.CrossRefPubMed
44.
go back to reference Gerhard W, Mozdzanowska K, Furchner M, Washko G, Maiese K. Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol Rev. 1997;159:95–103.CrossRefPubMed Gerhard W, Mozdzanowska K, Furchner M, Washko G, Maiese K. Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol Rev. 1997;159:95–103.CrossRefPubMed
46.
go back to reference Wheeler AW, Marshall JS, Ulrich JT. A Th1-inducing adjuvant, MPL, enhances antibody profiles in experimental animals suggesting it has the potential to improve the efficacy of allergy vaccines. Int Arch Allergy Immunol. 2001;126(2):135–9.CrossRefPubMed Wheeler AW, Marshall JS, Ulrich JT. A Th1-inducing adjuvant, MPL, enhances antibody profiles in experimental animals suggesting it has the potential to improve the efficacy of allergy vaccines. Int Arch Allergy Immunol. 2001;126(2):135–9.CrossRefPubMed
Metadata
Title
Comparison of a novel microcrystalline tyrosine adjuvant with aluminium hydroxide for enhancing vaccination against seasonal influenza
Authors
M. D Heath
N. J. Swan
A. C. Marriott
N. J. Silman
B. Hallis
C. Prevosto
K. E. Gooch
M. A. Skinner
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2017
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-017-2329-5

Other articles of this Issue 1/2017

BMC Infectious Diseases 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.