Skip to main content
Top
Published in: Virchows Archiv 5/2019

01-05-2019 | Original Article

Compact buds with biphasic differentiation and calcitonin-expressing neuroendocrine cells—previously unrecognized structures of thyroglossal duct unveiled by immunohistochemistry

Authors: Somboon Keelawat, Andrey Bychkov

Published in: Virchows Archiv | Issue 5/2019

Login to get access

Abstract

Immunophenotype of thyroglossal duct (TGD) cysts, including lining epithelium and thyroid remnants, is scarcely addressed in the literature. There is indirect evidence that C cells may be derived from progenitor cells of the midline thyroid primordium. This is supported by the recent concept of the endodermal origin of lateral thyroid anlagen and several case reports. We aimed to search for neuroendocrine cells in TGD cysts and to characterize immunophenotype of the thyroid follicles and epithelial lining of TGD. Out of 98 TGD cysts, 70% contained both cyst-lining epithelium and thyroid follicles, whereas 30% possessed only cyst-lining epithelium. Specimens eligible for immunohistochemistry (n = 61) were stained for thyroid-specific and neuroendocrine markers. Thyroid remnants were positive for thyroid transcription factor 1 (TTF-1) and other thyroid tissue-specific markers and negative for calcitonin. TGD epithelium showed strong p63 positivity. We found that respiratory epithelium in 9.8% of TGDs contained neuroendocrine cells positive for calcitonin, chromogranin A, and synaptophysin but negative for carcinoembryonic antigen. In 44.2% of the cases, we detected compact buds, microscopic structures appearing as nests of epithelial cells with a biphasic population of basal (p63+) and central (TTF-1+) cells. Thyroid remnants in TGD expressed full spectrum of thyroid-specific markers and contained no C cells. Instead, calcitonin-expressing neuroendocrine cells were found among the respiratory epithelium of TGD. These cells can be a potential source of neuroendocrine tumors mimicking medullary carcinoma in median anlage derivatives. We also discovered precursor compact buds with dual immunophenotype and proposed a concept of their morphogenesis.
Appendix
Available only for authorised users
Literature
1.
4.
go back to reference Sugiyama S (1971) The embryology of the human thyroid gland including ultimobranchial body and others related. Ergeb Anat Entwicklungsgesch 44(2):3–111PubMed Sugiyama S (1971) The embryology of the human thyroid gland including ultimobranchial body and others related. Ergeb Anat Entwicklungsgesch 44(2):3–111PubMed
5.
go back to reference Katz AD, Hachigian M (1988) Thyroglossal duct cysts. A thirty year experience with emphasis on occurrence in older patients. Am J Surg 155(6):741–744CrossRef Katz AD, Hachigian M (1988) Thyroglossal duct cysts. A thirty year experience with emphasis on occurrence in older patients. Am J Surg 155(6):741–744CrossRef
7.
go back to reference Ellis PD, van Nostrand AW (1977) The applied anatomy of thyroglossal tract remnants. Laryngoscope 87(5 Pt 1):765–770CrossRef Ellis PD, van Nostrand AW (1977) The applied anatomy of thyroglossal tract remnants. Laryngoscope 87(5 Pt 1):765–770CrossRef
8.
go back to reference Sprinzl GM, Koebke J, Wimmers-Klick J, Eckel HE, Thumfart WF (2000) Morphology of the human thyroglossal tract: a histologic and macroscopic study in infants and children. Ann Otol Rhinol Laryngol 109(12 Pt 1):1135–1139CrossRef Sprinzl GM, Koebke J, Wimmers-Klick J, Eckel HE, Thumfart WF (2000) Morphology of the human thyroglossal tract: a histologic and macroscopic study in infants and children. Ann Otol Rhinol Laryngol 109(12 Pt 1):1135–1139CrossRef
11.
go back to reference Ljungberg O (1992) Biopsy pathology of the thyroid and parathyroid. Biopsy pathology series, 1st edn. Chapman & Hall Medical, London, New York Ljungberg O (1992) Biopsy pathology of the thyroid and parathyroid. Biopsy pathology series, 1st edn. Chapman & Hall Medical, London, New York
15.
go back to reference Burke BA, Johnson D, Gilbert EF, Drut RM, Ludwig J, Wick MR (1987) Thyrocalcitonin-containing cells in the Di George anomaly. Hum Pathol 18(4):355–360CrossRef Burke BA, Johnson D, Gilbert EF, Drut RM, Ludwig J, Wick MR (1987) Thyrocalcitonin-containing cells in the Di George anomaly. Hum Pathol 18(4):355–360CrossRef
17.
go back to reference Pueblitz S, Weinberg AG, Albores-Saavedra J (1993) Thyroid C cells in the DiGeorge anomaly: a quantitative study. Pediatr Pathol 13(4):463–473CrossRef Pueblitz S, Weinberg AG, Albores-Saavedra J (1993) Thyroid C cells in the DiGeorge anomaly: a quantitative study. Pediatr Pathol 13(4):463–473CrossRef
19.
go back to reference Yaday S, Singh I, Singh J, Aggarwal N (2008) Medullary carcinoma in a lingual thyroid. Singap Med J 49(3):251–253 Yaday S, Singh I, Singh J, Aggarwal N (2008) Medullary carcinoma in a lingual thyroid. Singap Med J 49(3):251–253
21.
go back to reference Bychkov A, Jain D (2018) Multiple sections per slide for immunohistochemistry: a cost-effective alternative for research in resource-limited settings. Anal Quant Cytol Histol 40(4):211–212 Bychkov A, Jain D (2018) Multiple sections per slide for immunohistochemistry: a cost-effective alternative for research in resource-limited settings. Anal Quant Cytol Histol 40(4):211–212
24.
go back to reference Wang BY, Gil J, Kaufman D, Gan L, Kohtz DS, Burstein DE (2002) P63 in pulmonary epithelium, pulmonary squamous neoplasms, and other pulmonary tumors. Hum Pathol 33(9):921–926CrossRef Wang BY, Gil J, Kaufman D, Gan L, Kohtz DS, Burstein DE (2002) P63 in pulmonary epithelium, pulmonary squamous neoplasms, and other pulmonary tumors. Hum Pathol 33(9):921–926CrossRef
25.
go back to reference Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, Soares P, Cameselle-Teijeiro JF, Silva P, Reis-Filho JS, Reyes-Santias RM, Alfonsin-Barreiro N, Forteza J, Sobrinho-Simoes M (2004) Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Mod Pathol 17(7):819–826. https://doi.org/10.1038/modpathol.3800124 CrossRefPubMed Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, Soares P, Cameselle-Teijeiro JF, Silva P, Reis-Filho JS, Reyes-Santias RM, Alfonsin-Barreiro N, Forteza J, Sobrinho-Simoes M (2004) Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Mod Pathol 17(7):819–826. https://​doi.​org/​10.​1038/​modpathol.​3800124 CrossRefPubMed
29.
go back to reference Nozieres C, Chardon L, Goichot B, Borson-Chazot F, Hervieu V, Chikh K, Lombard-Bohas C, Walter T (2016) Neuroendocrine tumors producing calcitonin: characteristics, prognosis and potential interest of calcitonin monitoring during follow-up. Eur J Endocrinol 174(3):335–341. https://doi.org/10.1530/EJE-15-0917 CrossRefPubMed Nozieres C, Chardon L, Goichot B, Borson-Chazot F, Hervieu V, Chikh K, Lombard-Bohas C, Walter T (2016) Neuroendocrine tumors producing calcitonin: characteristics, prognosis and potential interest of calcitonin monitoring during follow-up. Eur J Endocrinol 174(3):335–341. https://​doi.​org/​10.​1530/​EJE-15-0917 CrossRefPubMed
30.
go back to reference Larochelle D, Arcand P, Belzile M, Gagnon NB (1979) Ectopic thyroid tissue—a review of the literature. J Otolaryngol 8(6):523–530PubMed Larochelle D, Arcand P, Belzile M, Gagnon NB (1979) Ectopic thyroid tissue—a review of the literature. J Otolaryngol 8(6):523–530PubMed
31.
go back to reference Smith JR, Oates E (2004) Radionuclide imaging of the thyroid gland: patterns, pearls, and pitfalls. Clin Nucl Med 29(3):181–193CrossRef Smith JR, Oates E (2004) Radionuclide imaging of the thyroid gland: patterns, pearls, and pitfalls. Clin Nucl Med 29(3):181–193CrossRef
32.
go back to reference Barber TW, Cherk MH, Topliss DJ, Serpell JW, Yap KS, Bailey M, Kalff V (2014) The prevalence of thyroglossal tract thyroid tissue on SPECT/CT following (131) I ablation therapy after total thyroidectomy for thyroid cancer. Clin Endocrinol 81(2):266–270. https://doi.org/10.1111/cen.12419 CrossRef Barber TW, Cherk MH, Topliss DJ, Serpell JW, Yap KS, Bailey M, Kalff V (2014) The prevalence of thyroglossal tract thyroid tissue on SPECT/CT following (131) I ablation therapy after total thyroidectomy for thyroid cancer. Clin Endocrinol 81(2):266–270. https://​doi.​org/​10.​1111/​cen.​12419 CrossRef
35.
go back to reference Camargo RY, Kanamura CT, Friguglietti CU, Nogueira CR, Iorcansky S, Tincani AJ, Bezerra AK, Brust E, Koyama FC, Camargo AA, Rego FOR, Galante PAF, Medeiros-Neto G, Rubio IGS (2018) Histopathological characterization and whole exome sequencing of ectopic thyroid: fetal architecture in a functional ectopic gland from adult patient. Int J Endocrinol 2018:4682876. https://doi.org/10.1155/2018/4682876 CrossRefPubMedPubMedCentral Camargo RY, Kanamura CT, Friguglietti CU, Nogueira CR, Iorcansky S, Tincani AJ, Bezerra AK, Brust E, Koyama FC, Camargo AA, Rego FOR, Galante PAF, Medeiros-Neto G, Rubio IGS (2018) Histopathological characterization and whole exome sequencing of ectopic thyroid: fetal architecture in a functional ectopic gland from adult patient. Int J Endocrinol 2018:4682876. https://​doi.​org/​10.​1155/​2018/​4682876 CrossRefPubMedPubMedCentral
Metadata
Title
Compact buds with biphasic differentiation and calcitonin-expressing neuroendocrine cells—previously unrecognized structures of thyroglossal duct unveiled by immunohistochemistry
Authors
Somboon Keelawat
Andrey Bychkov
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 5/2019
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-019-02536-6

Other articles of this Issue 5/2019

Virchows Archiv 5/2019 Go to the issue