Skip to main content
Top
Published in: Journal of Neuro-Oncology 3/2015

01-07-2015 | Editors' Invited Manuscript

Combining immunotherapy with radiation for the treatment of glioblastoma

Authors: Kevin K. H. Chow, Wendy Hara, Michael Lim, Gordon Li

Published in: Journal of Neuro-Oncology | Issue 3/2015

Login to get access

Abstract

Glioblastoma is a devastating cancer with universally poor outcomes in spite of current standard multimodal therapy. Immunotherapy is an attractive new treatment modality given its potential for exquisite specificity and its favorable side effect profile; however, clinical trials of immunotherapy in GBM have thus far shown modest benefit. Optimally combining radiation with immunotherapy may be the key to unlocking the potential of both therapies given the evidence that radiation can enhance anti-tumor immunity. Here we review this evidence and discuss considerations for combined therapy.
Literature
1.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRef
4.
go back to reference Heimberger AB, Sun W, Hussain SF et al (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro Oncol 10:98–103PubMedCentralPubMedCrossRef Heimberger AB, Sun W, Hussain SF et al (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro Oncol 10:98–103PubMedCentralPubMedCrossRef
5.
go back to reference Patel MA, Kim JE, Ruzevick J, Li G, Lim M (2014) The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers (Basel) 6:1953–1985CrossRef Patel MA, Kim JE, Ruzevick J, Li G, Lim M (2014) The future of glioblastoma therapy: synergism of standard of care and immunotherapy. Cancers (Basel) 6:1953–1985CrossRef
6.
go back to reference Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Fu Y-X, Auh SL (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496PubMedCentralPubMedCrossRef Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Fu Y-X, Auh SL (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496PubMedCentralPubMedCrossRef
7.
go back to reference Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271PubMedCentralPubMedCrossRef Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271PubMedCentralPubMedCrossRef
8.
go back to reference Nicholas S, Mathios D, Ruzevick J, Jackson C, Yang I, Lim M (2013) Current trends in glioblastoma multiforme treatment: radiation therapy and immune checkpoint inhibitors. Brain Tumor Res Treat 1:2–8PubMedCentralPubMedCrossRef Nicholas S, Mathios D, Ruzevick J, Jackson C, Yang I, Lim M (2013) Current trends in glioblastoma multiforme treatment: radiation therapy and immune checkpoint inhibitors. Brain Tumor Res Treat 1:2–8PubMedCentralPubMedCrossRef
9.
go back to reference Waziri A (2010) Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 21:31–42PubMedCrossRef Waziri A (2010) Glioblastoma-derived mechanisms of systemic immunosuppression. Neurosurg Clin N Am 21:31–42PubMedCrossRef
10.
go back to reference Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M (2011) Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011:732413PubMedCentralPubMedCrossRef Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M (2011) Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011:732413PubMedCentralPubMedCrossRef
11.
go back to reference Liu G, Ying H, Zeng G, Wheeler C, Black K, John S (2004) HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 64:4980–4986PubMedCrossRef Liu G, Ying H, Zeng G, Wheeler C, Black K, John S (2004) HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 64:4980–4986PubMedCrossRef
12.
go back to reference Saikali S, Avril T, Collet B, Hamlat A, Bansard J-Y, Drenou B, Guegan Y, Quillien V (2007) Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neurooncol 81:139–148PubMedCrossRef Saikali S, Avril T, Collet B, Hamlat A, Bansard J-Y, Drenou B, Guegan Y, Quillien V (2007) Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Ralpha2, gp100 and TRP-2 for immunotherapy. J Neurooncol 81:139–148PubMedCrossRef
13.
go back to reference Camara-Quintana JQ, Nitta RT, Li G (2012) Pathology: commonly monitored glioblastoma markers: EFGR, EGFRvIII, PTEN, and MGMT. Neurosurg Clin N Am 23:237–246PubMedCrossRef Camara-Quintana JQ, Nitta RT, Li G (2012) Pathology: commonly monitored glioblastoma markers: EFGR, EGFRvIII, PTEN, and MGMT. Neurosurg Clin N Am 23:237–246PubMedCrossRef
15.
go back to reference Didenko VV, Ngo HN, Minchew C, Baskin DS (2002) Apoptosis of T lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism. J Neurosurg 96:580–584PubMedCentralPubMedCrossRef Didenko VV, Ngo HN, Minchew C, Baskin DS (2002) Apoptosis of T lymphocytes invading glioblastomas multiforme: a possible tumor defense mechanism. J Neurosurg 96:580–584PubMedCentralPubMedCrossRef
16.
go back to reference Ichinose M, Masuoka J, Shiraishi T, Mineta T, Tabuchi K (2001) Fas ligand expression and depletion of T-cell infiltration in astrocytic tumors. Brain Tumor Pathol 18:37–42PubMedCrossRef Ichinose M, Masuoka J, Shiraishi T, Mineta T, Tabuchi K (2001) Fas ligand expression and depletion of T-cell infiltration in astrocytic tumors. Brain Tumor Pathol 18:37–42PubMedCrossRef
17.
go back to reference Saas P, Walker PR, Hahne M et al (1997) Fas ligand expression by astrocytoma in vivo : Maintaining immune privilege in the brain? J Clin Invest 99:1173–1178PubMedCentralPubMedCrossRef Saas P, Walker PR, Hahne M et al (1997) Fas ligand expression by astrocytoma in vivo : Maintaining immune privilege in the brain? J Clin Invest 99:1173–1178PubMedCentralPubMedCrossRef
18.
go back to reference Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H (2003) Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467PubMed Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H (2003) Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467PubMed
19.
go back to reference Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88PubMedCrossRef Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 13:84–88PubMedCrossRef
20.
go back to reference Dunn GP, Dunn IF, Curry WT (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 7:12PubMedCentralPubMed Dunn GP, Dunn IF, Curry WT (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 7:12PubMedCentralPubMed
21.
go back to reference Fontana A, Hengartner H, de Tribolet N, Weber E (1984) Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J Immunol 132:1837–1844PubMed Fontana A, Hengartner H, de Tribolet N, Weber E (1984) Glioblastoma cells release interleukin 1 and factors inhibiting interleukin 2-mediated effects. J Immunol 132:1837–1844PubMed
22.
go back to reference Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143:3222–3229PubMed Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143:3222–3229PubMed
23.
go back to reference Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302PubMedCrossRef Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302PubMedCrossRef
24.
go back to reference El Andaloussi A, Lesniak MS (2006) An increase in CD4+ CD25+ FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 8:234–243PubMedCentralPubMedCrossRef El Andaloussi A, Lesniak MS (2006) An increase in CD4+ CD25+ FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 8:234–243PubMedCentralPubMedCrossRef
25.
go back to reference Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT (2010) TGF-b downregulates the activating receptor NKG2D on NK cells and CD8 + T cells in glioma patients. Neuro Oncol 12:7–13PubMedCentralPubMedCrossRef Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier LL, Parsa AT (2010) TGF-b downregulates the activating receptor NKG2D on NK cells and CD8 + T cells in glioma patients. Neuro Oncol 12:7–13PubMedCentralPubMedCrossRef
26.
go back to reference Walker M, Green S, Byar D et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329PubMedCrossRef Walker M, Green S, Byar D et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329PubMedCrossRef
27.
go back to reference Walker M, Alexander E Jr, Hunt W et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial. J Neurosurg 49:333–343PubMedCrossRef Walker M, Alexander E Jr, Hunt W et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial. J Neurosurg 49:333–343PubMedCrossRef
28.
go back to reference Coffey R, Lunsford D, Taylor F (1988) Survival after stereotactic biopsy of malignant gliomas. Neurosurgery 22:465–473PubMedCrossRef Coffey R, Lunsford D, Taylor F (1988) Survival after stereotactic biopsy of malignant gliomas. Neurosurgery 22:465–473PubMedCrossRef
29.
go back to reference Chang C, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson J, Tsukada Y (1983) Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas: a joint radiation therapy oncology group and eastern cooperative oncology group study. Cancer 52:997–1007PubMedCrossRef Chang C, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, Nelson J, Tsukada Y (1983) Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas: a joint radiation therapy oncology group and eastern cooperative oncology group study. Cancer 52:997–1007PubMedCrossRef
30.
go back to reference Wallner K, Galicich J, Krol G, Arbit E, Malkin M (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409PubMedCrossRef Wallner K, Galicich J, Krol G, Arbit E, Malkin M (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409PubMedCrossRef
31.
go back to reference Choucair A, Levin V, Gutin P, Davis R, Silver P, Edwards M, Wilson C (1986) Development of multiple lesions during radiation therapy and chemotherapy in patients with gliomas. J Neurosurg 65:654–658PubMedCrossRef Choucair A, Levin V, Gutin P, Davis R, Silver P, Edwards M, Wilson C (1986) Development of multiple lesions during radiation therapy and chemotherapy in patients with gliomas. J Neurosurg 65:654–658PubMedCrossRef
32.
go back to reference Narayana A, Yamada J, Berry S, Shah P, Hunt M, Gutin PH, Leibel SA (2006) Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results. Int J Radiat Oncol Biol Phys 64:892–897PubMedCrossRef Narayana A, Yamada J, Berry S, Shah P, Hunt M, Gutin PH, Leibel SA (2006) Intensity-modulated radiotherapy in high-grade gliomas: clinical and dosimetric results. Int J Radiat Oncol Biol Phys 64:892–897PubMedCrossRef
33.
go back to reference Chan J, Lee S, Fraass B, Normolle D, Greenberg H, Junck L, Gebarski S, Sandler H (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20:1635–1642PubMedCrossRef Chan J, Lee S, Fraass B, Normolle D, Greenberg H, Junck L, Gebarski S, Sandler H (2002) Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 20:1635–1642PubMedCrossRef
34.
go back to reference Souhami L, Seiferheld W, Brachman D et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 60:853–860PubMedCrossRef Souhami L, Seiferheld W, Brachman D et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys 60:853–860PubMedCrossRef
35.
go back to reference Klein B, Loven D, Lurie H, Rakowsky E, Nyska A, Levin I, Klein T (1994) The effect of irradiation on expression of HLA class I antigens in human brain tumors in culture. J Neurosurg 80:1074–1077PubMedCrossRef Klein B, Loven D, Lurie H, Rakowsky E, Nyska A, Levin I, Klein T (1994) The effect of irradiation on expression of HLA class I antigens in human brain tumors in culture. J Neurosurg 80:1074–1077PubMedCrossRef
36.
go back to reference Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-Induced IFN-production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139PubMedCrossRef Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-Induced IFN-production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139PubMedCrossRef
37.
go back to reference Garnett CT, Palena C, Chakarborty M, Tsang K, Schlom J, Hodge JW (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64:7985–7994PubMedCrossRef Garnett CT, Palena C, Chakarborty M, Tsang K, Schlom J, Hodge JW (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64:7985–7994PubMedCrossRef
38.
go back to reference Kim J-Y, Son Y-O, Park S-W, Bae J-H, Chung JS, Kim HH, Chung B-S, Kim S-H, Kang C-D (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38:474–484PubMedCrossRef Kim J-Y, Son Y-O, Park S-W, Bae J-H, Chung JS, Kim HH, Chung B-S, Kim S-H, Kang C-D (2006) Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med 38:474–484PubMedCrossRef
39.
go back to reference Chakraborty M, Abrams S, Norman Coleman C, Camphausen K, Schlom J, Hodge J (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64:4328–4337PubMedCrossRef Chakraborty M, Abrams S, Norman Coleman C, Camphausen K, Schlom J, Hodge J (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64:4328–4337PubMedCrossRef
40.
go back to reference Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595PubMedCentralPubMedCrossRef Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114:589–595PubMedCentralPubMedCrossRef
41.
42.
go back to reference Robin HI, AuBuchon J, Varanasi VR, Weinstein AB (1981) The abscopal effect: demonstration in lymphomatous involvement of kidneys. Med Pediatr Oncol 9:473–476PubMedCrossRef Robin HI, AuBuchon J, Varanasi VR, Weinstein AB (1981) The abscopal effect: demonstration in lymphomatous involvement of kidneys. Med Pediatr Oncol 9:473–476PubMedCrossRef
43.
go back to reference Wersäll PJ, Blomgren H, Pisa P, Lax I, Kälkner K-M, Svedman C (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45:493–497PubMedCrossRef Wersäll PJ, Blomgren H, Pisa P, Lax I, Kälkner K-M, Svedman C (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45:493–497PubMedCrossRef
44.
go back to reference Formenti SC, Demaria S (2012) Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 84:879–880PubMedCrossRef Formenti SC, Demaria S (2012) Radiation therapy to convert the tumor into an in situ vaccine. Int J Radiat Oncol Biol Phys 84:879–880PubMedCrossRef
45.
go back to reference Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. JNCI J Natl Cancer Inst 105:256–265PubMedCrossRef Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. JNCI J Natl Cancer Inst 105:256–265PubMedCrossRef
46.
go back to reference Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC (2014) The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 182:170–181PubMedCentralPubMedCrossRef Demaria S, Pilones KA, Vanpouille-Box C, Golden EB, Formenti SC (2014) The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 182:170–181PubMedCentralPubMedCrossRef
47.
go back to reference Newcomb EW, Demaria S, Lukyanov Y et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12:4730–4737PubMedCrossRef Newcomb EW, Demaria S, Lukyanov Y et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12:4730–4737PubMedCrossRef
48.
go back to reference Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349PubMedCentralPubMedCrossRef Zeng J, See AP, Phallen J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86:343–349PubMedCentralPubMedCrossRef
49.
go back to reference Belcaid Z, Phallen JA, Zeng J et al (2014) Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS ONE 9:e101764PubMedCentralPubMedCrossRef Belcaid Z, Phallen JA, Zeng J et al (2014) Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS ONE 9:e101764PubMedCentralPubMedCrossRef
50.
go back to reference Newcomb EW, Lukyanov Y, Kawashima N, Alonso-Basanta M, Wang S-C, Liu M, Jure-Kunkel M, Zagzag D, Demaria S, Formenti SC (2010) Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res 173:426–432PubMedCentralPubMedCrossRef Newcomb EW, Lukyanov Y, Kawashima N, Alonso-Basanta M, Wang S-C, Liu M, Jure-Kunkel M, Zagzag D, Demaria S, Formenti SC (2010) Radiotherapy enhances antitumor effect of anti-CD137 therapy in a mouse Glioma model. Radiat Res 173:426–432PubMedCentralPubMedCrossRef
51.
go back to reference Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, Piantadosi S (2011) Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 17:5473–5480PubMedCentralPubMedCrossRef Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, Piantadosi S (2011) Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res 17:5473–5480PubMedCentralPubMedCrossRef
52.
go back to reference Yang S, Rafla S, Youssef E, Selim H, Salloum N, Chuang J (1988) Changes in T-cell subsets after radiation therapy. Radiology 168:537–540PubMedCrossRef Yang S, Rafla S, Youssef E, Selim H, Salloum N, Chuang J (1988) Changes in T-cell subsets after radiation therapy. Radiology 168:537–540PubMedCrossRef
53.
go back to reference Crane CA, Ahn BJ, Han SJ, Parsa AT (2012) Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 14:584–595PubMedCentralPubMedCrossRef Crane CA, Ahn BJ, Han SJ, Parsa AT (2012) Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol 14:584–595PubMedCentralPubMedCrossRef
54.
go back to reference Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388PubMedCentralPubMedCrossRef Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388PubMedCentralPubMedCrossRef
55.
go back to reference Bouquet F, Pal A, Pilones KA et al (2011) TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765PubMedCentralPubMedCrossRef Bouquet F, Pal A, Pilones KA et al (2011) TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765PubMedCentralPubMedCrossRef
Metadata
Title
Combining immunotherapy with radiation for the treatment of glioblastoma
Authors
Kevin K. H. Chow
Wendy Hara
Michael Lim
Gordon Li
Publication date
01-07-2015
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 3/2015
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-015-1762-9

Other articles of this Issue 3/2015

Journal of Neuro-Oncology 3/2015 Go to the issue