Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Colorectal Cancer | Research

Silencing eL31 suppresses the progression of colorectal cancer via targeting DEPDC1

Authors: Gaowa Sharen, Xiongfeng Li, Jiaxin Sun, Lei Zhang, Wen Xi, Xiaodong Zhao, Fei Han, Longlong Jia, Rong A, Haidong Cheng, Mingxing Hou

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Colorectal cancer (CRC) is one of the most commonly diagnosed human malignancies. Ribosomal protein L31 (RPL31, aka eL31) is a component of the 60S large ribosomal subunit, and its expression pattern and functional role in CRC have not been reported.

Methods

Herein, we identified that eL31 protein level was dramatically increased in CRC tissues through using IHC analysis. More notably, elevated eL31 was associated with larger tumor size and shorter overall survival. Besides, we evaluated the effects of eL31 depletion on CRC cell phenotypes in vitro.

Results

The data indicated that eL31 knockdown restricted CRC cell proliferation, migration and colony formation whilst enhancing cell apoptosis. Importantly, eL31 was also essential for CRC tumor growth in vivo, as demonstrated by impaired tumor growth markers and reduced Ki67 levels in xenografts from eL31-depleted cells. In addition, our evidence indicated that DEP domain containing 1 (DEPDC1) was a potential downstream target of eL31 in regulating CRC. Consistently, DEPDC1 depletion restrained CRC cell proliferation and migration, as well as facilitated cell apoptosis. More interestingly, DEPDC1 depletion could reverse the promotion effects of eL31 elevation on CRC cells.

Conclusions

Identification of eL31’s function in CRC may pave the way for future development of more specific and more effective targeted therapy strategies against CRC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019;394(10207):1467–80.CrossRef Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. The Lancet. 2019;394(10207):1467–80.CrossRef
2.
go back to reference Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJY, Young GP, et al. Colorectal cancer screening: a global overview of existing programmes. Gut. 2015. 64(10). Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJY, Young GP, et al. Colorectal cancer screening: a global overview of existing programmes. Gut. 2015. 64(10).
3.
go back to reference Haraldsdottir S, Einarsdottir HM, Smaradottir A, Gunnlaugsson A, Halfdanarson TR. Colorectal cancer—review. Laeknabladid. 2014;100(2):75–82.PubMed Haraldsdottir S, Einarsdottir HM, Smaradottir A, Gunnlaugsson A, Halfdanarson TR. Colorectal cancer—review. Laeknabladid. 2014;100(2):75–82.PubMed
4.
go back to reference Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704.CrossRefPubMed Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019;16(11):690–704.CrossRefPubMed
5.
go back to reference Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med. 2019;11(1):11.CrossRefPubMedPubMedCentral Allen J, Sears CL. Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med. 2019;11(1):11.CrossRefPubMedPubMedCentral
9.
go back to reference Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 2019;125(23):4139.CrossRefPubMed Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 2019;125(23):4139.CrossRefPubMed
10.
go back to reference Barnard GF, Staniunas RJ, Bao S, Mafune K, Steele GD Jr, Gollan JL, et al. Increased expression of human ribosomal phosphoprotein P0 messenger RNA in hepatocellular carcinoma and colon carcinoma. Cancer Res. 1992;52(11):3067–72.PubMed Barnard GF, Staniunas RJ, Bao S, Mafune K, Steele GD Jr, Gollan JL, et al. Increased expression of human ribosomal phosphoprotein P0 messenger RNA in hepatocellular carcinoma and colon carcinoma. Cancer Res. 1992;52(11):3067–72.PubMed
11.
go back to reference Chiao PJ, Shin DM, Sacks PG, Hong WK, Tainsky MA. Elevated expression of the ribosomal protein S2 gene in human tumors. Mol Carcinog. 1992;5(3):219–31.CrossRefPubMed Chiao PJ, Shin DM, Sacks PG, Hong WK, Tainsky MA. Elevated expression of the ribosomal protein S2 gene in human tumors. Mol Carcinog. 1992;5(3):219–31.CrossRefPubMed
12.
go back to reference Denis MG, Chadeneau C, Lecabellec MT, LeMoullac B, LeMevel B, Meflah K, et al. Over-expression of the S13 ribosomal protein in actively growing cells. Int J Cancer. 1993;55(2):275–80.CrossRefPubMed Denis MG, Chadeneau C, Lecabellec MT, LeMoullac B, LeMevel B, Meflah K, et al. Over-expression of the S13 ribosomal protein in actively growing cells. Int J Cancer. 1993;55(2):275–80.CrossRefPubMed
13.
go back to reference Clark DE, Errington TM, Smith JA, Frierson HF Jr, Weber MJ, Lannigan DA. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res. 2005;65(8):3108–16.CrossRefPubMed Clark DE, Errington TM, Smith JA, Frierson HF Jr, Weber MJ, Lannigan DA. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res. 2005;65(8):3108–16.CrossRefPubMed
16.
go back to reference Thomson E, Ferreira-Cerca S, Hurt E. Eukaryotic ribosome biogenesis at a glance. J Cell Sci. 2013;126(Pt 21):4815–21.CrossRefPubMed Thomson E, Ferreira-Cerca S, Hurt E. Eukaryotic ribosome biogenesis at a glance. J Cell Sci. 2013;126(Pt 21):4815–21.CrossRefPubMed
17.
go back to reference Mager WH. Control of ribosomal protein gene expression. Biochem Biophys Acta. 1988;949(1):1–15.PubMed Mager WH. Control of ribosomal protein gene expression. Biochem Biophys Acta. 1988;949(1):1–15.PubMed
18.
go back to reference de la Cruz J, Karbstein K, Woolford JL Jr. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem. 2015;84:93–129.CrossRefPubMedPubMedCentral de la Cruz J, Karbstein K, Woolford JL Jr. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem. 2015;84:93–129.CrossRefPubMedPubMedCentral
19.
go back to reference Oen H, Pellegrini M, Eilat D, Cantor CR. Identification of 50S proteins at the peptidyl-tRNA binding site of Escherichia coli ribosomes. Proc Natl Acad Sci USA. 1973;70(10):2799–803.CrossRefPubMedPubMedCentral Oen H, Pellegrini M, Eilat D, Cantor CR. Identification of 50S proteins at the peptidyl-tRNA binding site of Escherichia coli ribosomes. Proc Natl Acad Sci USA. 1973;70(10):2799–803.CrossRefPubMedPubMedCentral
20.
go back to reference Tanaka T, Kuwano Y, Kuzumaki T, Ishikawa K, Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L31. Eur J Biochem. 1987;162(1):45–8.CrossRefPubMed Tanaka T, Kuwano Y, Kuzumaki T, Ishikawa K, Ogata K. Nucleotide sequence of cloned cDNA specific for rat ribosomal protein L31. Eur J Biochem. 1987;162(1):45–8.CrossRefPubMed
21.
go back to reference Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000;289(5481):920–30.CrossRefPubMed Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000;289(5481):920–30.CrossRefPubMed
22.
go back to reference Yojiro M, Toshiaki M, Kazuhiro I, Toshiyuki O, Wataru S, Kuniko HI, et al. Short hairpin RNA library-based functional screening identified ribosomal protein l31 that modulates prostate cancer cell growth via p53 pathway. PLOS ONE. 2014;9(10):e108743.CrossRef Yojiro M, Toshiaki M, Kazuhiro I, Toshiyuki O, Wataru S, Kuniko HI, et al. Short hairpin RNA library-based functional screening identified ribosomal protein l31 that modulates prostate cancer cell growth via p53 pathway. PLOS ONE. 2014;9(10):e108743.CrossRef
23.
go back to reference Maruyama Y, Miyazaki T, Ikeda K, Okumura T, Sato W, Horie-Inoue K, et al. Short hairpin RNA library-based functional screening identified ribosomal protein L31 that modulates prostate cancer cell growth via p53 pathway. PLoS ONE. 2014;9(10): e108743.CrossRefPubMedPubMedCentral Maruyama Y, Miyazaki T, Ikeda K, Okumura T, Sato W, Horie-Inoue K, et al. Short hairpin RNA library-based functional screening identified ribosomal protein L31 that modulates prostate cancer cell growth via p53 pathway. PLoS ONE. 2014;9(10): e108743.CrossRefPubMedPubMedCentral
24.
go back to reference Farrar JE, Quarello P, Fisher R, O’Brien KA, Aspesi A, Parrella S, et al. Exploiting pre-rRNA processing in diamond blackfan anemia gene discovery and diagnosis. Am J Hematol. 2014;89(10):985.CrossRefPubMedPubMedCentral Farrar JE, Quarello P, Fisher R, O’Brien KA, Aspesi A, Parrella S, et al. Exploiting pre-rRNA processing in diamond blackfan anemia gene discovery and diagnosis. Am J Hematol. 2014;89(10):985.CrossRefPubMedPubMedCentral
25.
go back to reference Chester KA, Robson L, Begent RH, Talbot IC, Pringle JH, Primrose L, et al. Identification of a human ribosomal protein mRNA with increased expression in colorectal tumours. Biochim Biophys Acta. 1989;1009(3):297–300.CrossRefPubMed Chester KA, Robson L, Begent RH, Talbot IC, Pringle JH, Primrose L, et al. Identification of a human ribosomal protein mRNA with increased expression in colorectal tumours. Biochim Biophys Acta. 1989;1009(3):297–300.CrossRefPubMed
26.
go back to reference Gately L, Wong HL, Tie J, Wong R, Lee M, Lee B, et al. Emerging strategies in the initial management of locally advanced rectal cancer. Future Oncol. 2019;15(25):2955–65.CrossRefPubMed Gately L, Wong HL, Tie J, Wong R, Lee M, Lee B, et al. Emerging strategies in the initial management of locally advanced rectal cancer. Future Oncol. 2019;15(25):2955–65.CrossRefPubMed
27.
go back to reference Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 2019;125(23):4139–47.CrossRefPubMed Piawah S, Venook AP. Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 2019;125(23):4139–47.CrossRefPubMed
28.
go back to reference Fan Y, Kao C, Yang F, Wang F, Yin G, Wang Y, et al. Integrated multi-omics analysis model to identify biomarkers associated with prognosis of breast cancer. Front Oncol. 2022;12: 899900.CrossRefPubMedPubMedCentral Fan Y, Kao C, Yang F, Wang F, Yin G, Wang Y, et al. Integrated multi-omics analysis model to identify biomarkers associated with prognosis of breast cancer. Front Oncol. 2022;12: 899900.CrossRefPubMedPubMedCentral
29.
go back to reference Kanehira M, Harada Y, Takata R, Shuin T, Katagiri T. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 2007;26(44):6448–55.CrossRefPubMed Kanehira M, Harada Y, Takata R, Shuin T, Katagiri T. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 2007;26(44):6448–55.CrossRefPubMed
30.
go back to reference Sendoel A, Maida S, Zheng X, Teo Y, Stergiou L, Rossi C-A, et al. DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol. 2014;16(8):812–20.CrossRefPubMed Sendoel A, Maida S, Zheng X, Teo Y, Stergiou L, Rossi C-A, et al. DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol. 2014;16(8):812–20.CrossRefPubMed
31.
go back to reference Harada Y, Kanehira M, Fujisawa Y, Takata R, Shuin T, Miki T, et al. Cell-permeable peptide DEPDC1-ZNF224 interferes with transcriptional repression and oncogenicity in bladder cancer cells. Can Res. 2010;70(14):5829.CrossRef Harada Y, Kanehira M, Fujisawa Y, Takata R, Shuin T, Miki T, et al. Cell-permeable peptide DEPDC1-ZNF224 interferes with transcriptional repression and oncogenicity in bladder cancer cells. Can Res. 2010;70(14):5829.CrossRef
32.
go back to reference Sendoel A, Maida S, Zheng X, Teo Y, Stergiou L, Rossi CA, et al. DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol. 2014;16(8):812–20.CrossRefPubMed Sendoel A, Maida S, Zheng X, Teo Y, Stergiou L, Rossi CA, et al. DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol. 2014;16(8):812–20.CrossRefPubMed
33.
go back to reference Yang Y, Li C, Song W, Wang W, Qian G. Purification, optimization and physicochemical properties of collagen from soft-shelled turtle calipash. Int J Biol Macromol. 2016;89:344–52.CrossRefPubMed Yang Y, Li C, Song W, Wang W, Qian G. Purification, optimization and physicochemical properties of collagen from soft-shelled turtle calipash. Int J Biol Macromol. 2016;89:344–52.CrossRefPubMed
34.
35.
go back to reference Mi Y, Zhang C, Bu Y, Zhang Y, He L, Li H, et al. DEPDC1 is a novel cell cycle related gene that regulates mitotic progression. BMB Rep. 2015;48(7):413–8.CrossRefPubMedPubMedCentral Mi Y, Zhang C, Bu Y, Zhang Y, He L, Li H, et al. DEPDC1 is a novel cell cycle related gene that regulates mitotic progression. BMB Rep. 2015;48(7):413–8.CrossRefPubMedPubMedCentral
36.
go back to reference Kanehira M, Harada Y, Takata R, Shuin T, Miki T, Fujioka T, et al. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 2007;26(44):6448–55.CrossRefPubMed Kanehira M, Harada Y, Takata R, Shuin T, Miki T, Fujioka T, et al. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 2007;26(44):6448–55.CrossRefPubMed
37.
go back to reference Yuan SG, Liao WJ, Yang JJ, Huang GJ, Huang ZQ. DEP Domain Containing 1 is a novel diagnostic marker and prognostic predictor for hepatocellular carcinoma. Asian Pac J Cancer Prevention Apjcp. 2015;15(24):10917–22.CrossRef Yuan SG, Liao WJ, Yang JJ, Huang GJ, Huang ZQ. DEP Domain Containing 1 is a novel diagnostic marker and prognostic predictor for hepatocellular carcinoma. Asian Pac J Cancer Prevention Apjcp. 2015;15(24):10917–22.CrossRef
38.
go back to reference Alboukadel K, Matthieu S, Jér M, Jean-Luc V, Thierry R, Hartmut G, et al. Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells. Plos ONE. 2013;8(4):e62752.CrossRef Alboukadel K, Matthieu S, Jér M, Jean-Luc V, Thierry R, Hartmut G, et al. Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells. Plos ONE. 2013;8(4):e62752.CrossRef
39.
go back to reference Yukinaga M, Kenichi K, Tomoko N, Kazutaka K, Goro K, Hideki K, et al. Clinicopathological significance and prognostic value of Wilms’ tumor gene expression in colorectal cancer. Cancer Biomark. 2015;15(6):789–97.CrossRef Yukinaga M, Kenichi K, Tomoko N, Kazutaka K, Goro K, Hideki K, et al. Clinicopathological significance and prognostic value of Wilms’ tumor gene expression in colorectal cancer. Cancer Biomark. 2015;15(6):789–97.CrossRef
40.
go back to reference Shen X, Han J. Overexpression of gene DEP domain containing 1 and its clinical prognostic significance in colorectal cancer. J Clin Lab Anal. 2020;34(12): e23634.CrossRefPubMedPubMedCentral Shen X, Han J. Overexpression of gene DEP domain containing 1 and its clinical prognostic significance in colorectal cancer. J Clin Lab Anal. 2020;34(12): e23634.CrossRefPubMedPubMedCentral
41.
go back to reference Wang Q, Jiang S, Liu J, Ma G, Zheng J, Zhang Y. DEP domain containing 1 promotes proliferation, invasion, and epithelial-mesenchymal transition in colorectal cancer by enhancing expression of suppressor of zest 12. Cancer Biother Radiopharm. 2021;36(1):36–44.CrossRefPubMed Wang Q, Jiang S, Liu J, Ma G, Zheng J, Zhang Y. DEP domain containing 1 promotes proliferation, invasion, and epithelial-mesenchymal transition in colorectal cancer by enhancing expression of suppressor of zest 12. Cancer Biother Radiopharm. 2021;36(1):36–44.CrossRefPubMed
Metadata
Title
Silencing eL31 suppresses the progression of colorectal cancer via targeting DEPDC1
Authors
Gaowa Sharen
Xiongfeng Li
Jiaxin Sun
Lei Zhang
Wen Xi
Xiaodong Zhao
Fei Han
Longlong Jia
Rong A
Haidong Cheng
Mingxing Hou
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03663-6

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine