Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Colorectal Cancer | Research

OLFM2 promotes epithelial-mesenchymal transition, migration, and invasion in colorectal cancer through the TGF-β/Smad signaling pathway

Authors: Yong Tang, Yi Liu, Xiaobo Wang, Haiyang Guo, Lin Chen, Guangbing Hu, Yutong Cui, Shiqi Liang, Ji Zuo, Zichen Luo, Xinrui Chen, Xianfei Wang

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Colorectal cancer (CRC) is an aggressive tumor of the gastrointestinal tract, which is a major public health concern worldwide. Despite numerous studies, the precise mechanism of metastasis behind its progression remains elusive. As a member of the containing olfactomedin domains protein family, olfactomedin 2 (OLFM2) may play a role in tumor metastasis. It is highly expressed in colorectal cancer, and its role in the metastasis of CRC is still unclear. As such, this study seeks to explore the function of OLFM2 on CRC metastasis and its potential mechanisms.

Methods

Real-time fluorescence quantitative PCR and western blotting were used to study the expression of OLFM2 in human CRC and adjacent normal tissues. Knockdown and overexpression OLFM2 cell lines were constructed using siRNA and overexpression plasmids to explore the role of OLFM2 in the migration and invasion of CRC through transwell, and wound healing experiments. Finally, the expression of epithelial-mesenchymal transition (EMT) -related proteins and TGF-β/Smad signaling pathway-related proteins was investigated using western blotting.

Results

In this study, we observed an elevation of OLFM2 expression levels in CRC tissues. To investigate the function of OLFM2, we overexpressed and knocked down OLFM2. We discovered that OLFM2 knockdown inhibited migration and invasion of colon cancer cells. Furthermore, E-cadherin expression increased while N-cadherin and Vimentin expression were opposite. It is no surprise that overexpressing OLFM2 had the opposite effects. We also identified that OLFM2 knockdown resulted in reduced TGF-βR1 and downstream molecules p-Smad2 and p-Smad3, which are related to the TGF-β / Smad pathway. In contrast, overexpressing OLFM2 significantly boosted their expression levels.

Conclusion

The protein OLFM2 has been identified as a crucial determinant in the progression of CRC. Its mechanism of action involves the facilitation of EMT through the TGF-β/Smad signaling pathway. Given its pivotal role in CRC, OLFM2 has emerged as a promising diagnostic and therapeutic target for the disease. These results indicate the potential of OLFM2 as a valuable biomarker for CRC diagnosis and treatment and highlight the need for further research exploring its clinical significance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet (London England). 2019;394(10207):1467–80.CrossRefPubMed Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet (London England). 2019;394(10207):1467–80.CrossRefPubMed
2.
go back to reference Grewal S, Oosterling SJ, van Egmond M. Surgery for Colorectal Cancer: a trigger for liver Metastases Development? New insights into the underlying mechanisms. Biomedicines 2021, 9(2). Grewal S, Oosterling SJ, van Egmond M. Surgery for Colorectal Cancer: a trigger for liver Metastases Development? New insights into the underlying mechanisms. Biomedicines 2021, 9(2).
3.
go back to reference Ishimaru K, Kawai K, Nozawa H, Sasaki K, Murono K, Emoto S, Ishii H, Anzai H, Sonoda H, Yamauchi S, et al. Hazard function analysis of metastatic recurrence after colorectal cancer surgery-A nationwide retrospective study. J Surg Oncol. 2021;123(4):1015–22.CrossRefPubMed Ishimaru K, Kawai K, Nozawa H, Sasaki K, Murono K, Emoto S, Ishii H, Anzai H, Sonoda H, Yamauchi S, et al. Hazard function analysis of metastatic recurrence after colorectal cancer surgery-A nationwide retrospective study. J Surg Oncol. 2021;123(4):1015–22.CrossRefPubMed
4.
go back to reference Galizia G, Gemei M, Orditura M, Romano C, Zamboli A, Castellano P, Mabilia A, Auricchio A, De Vita F, Del Vecchio L, et al. Postoperative detection of circulating tumor cells predicts tumor recurrence in colorectal cancer patients. J Gastrointest Surgery: Official J Soc Surg Aliment Tract. 2013;17(10):1809–18.CrossRef Galizia G, Gemei M, Orditura M, Romano C, Zamboli A, Castellano P, Mabilia A, Auricchio A, De Vita F, Del Vecchio L, et al. Postoperative detection of circulating tumor cells predicts tumor recurrence in colorectal cancer patients. J Gastrointest Surgery: Official J Soc Surg Aliment Tract. 2013;17(10):1809–18.CrossRef
5.
go back to reference Manfioletti G, Fedele M. Epithelial-mesenchymal transition (EMT) 2021. Int J Mol Sci 2022, 23(10). Manfioletti G, Fedele M. Epithelial-mesenchymal transition (EMT) 2021. Int J Mol Sci 2022, 23(10).
6.
go back to reference Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019;29(3):212–26.CrossRefPubMed Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol. 2019;29(3):212–26.CrossRefPubMed
7.
go back to reference Mittal V. Epithelial mesenchymal transition in Tumor Metastasis. Annu Rev Pathol. 2018;13:395–412.CrossRefPubMed Mittal V. Epithelial mesenchymal transition in Tumor Metastasis. Annu Rev Pathol. 2018;13:395–412.CrossRefPubMed
8.
go back to reference Xu M, Zhou H, Zhang C, He J, Wei H, Zhou M, Lu Y, Sun Y, Ding JW, Zeng J, et al. ADAM17 promotes epithelial-mesenchymal transition via TGF-β/Smad pathway in gastric carcinoma cells. Int J Oncol. 2016;49(6):2520–8.CrossRefPubMed Xu M, Zhou H, Zhang C, He J, Wei H, Zhou M, Lu Y, Sun Y, Ding JW, Zeng J, et al. ADAM17 promotes epithelial-mesenchymal transition via TGF-β/Smad pathway in gastric carcinoma cells. Int J Oncol. 2016;49(6):2520–8.CrossRefPubMed
10.
go back to reference Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules 2020, 10(3). Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules 2020, 10(3).
11.
go back to reference Tiwari R, Bargmann W, Bose HR Jr. Activation of the TGF-β/Smad signaling pathway in oncogenic transformation by v-Rel. Virology. 2011;413(1):60–71.CrossRefPubMed Tiwari R, Bargmann W, Bose HR Jr. Activation of the TGF-β/Smad signaling pathway in oncogenic transformation by v-Rel. Virology. 2011;413(1):60–71.CrossRefPubMed
12.
go back to reference Zhou H, Zou J, Shao C, Zhou A, Yu J, Chen S, Xu C. Prolyl 4-hydroxylase subunit alpha 3 facilitates human colon cancer growth and metastasis through the TGF-β/Smad signaling pathway. Pathol Res Pract. 2022;230:153749.CrossRefPubMed Zhou H, Zou J, Shao C, Zhou A, Yu J, Chen S, Xu C. Prolyl 4-hydroxylase subunit alpha 3 facilitates human colon cancer growth and metastasis through the TGF-β/Smad signaling pathway. Pathol Res Pract. 2022;230:153749.CrossRefPubMed
13.
go back to reference Liu J, Chen Y, Cao Z, Guan B, Peng J, Chen Y, Zhan Z, Sferra TJ, Sankararaman S, Lin J. Babao Dan inhibits the migration and invasion of gastric cancer cells by suppressing epithelial-mesenchymal transition through the TGF-β/Smad pathway. J Int Med Res. 2020;48(6):300060520925598.CrossRefPubMed Liu J, Chen Y, Cao Z, Guan B, Peng J, Chen Y, Zhan Z, Sferra TJ, Sankararaman S, Lin J. Babao Dan inhibits the migration and invasion of gastric cancer cells by suppressing epithelial-mesenchymal transition through the TGF-β/Smad pathway. J Int Med Res. 2020;48(6):300060520925598.CrossRefPubMed
14.
go back to reference Wang S, Tong X, Li C, Jin E, Su Z, Sun Z, Zhang W, Lei Z, Zhang HT. Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep. 2021;22(6):e52079.CrossRefPubMedPubMedCentral Wang S, Tong X, Li C, Jin E, Su Z, Sun Z, Zhang W, Lei Z, Zhang HT. Quaking 5 suppresses TGF-β-induced EMT and cell invasion in lung adenocarcinoma. EMBO Rep. 2021;22(6):e52079.CrossRefPubMedPubMedCentral
15.
go back to reference Anholt RR. Olfactomedin proteins: central players in development and disease. Front cell Dev Biology. 2014;2:6.CrossRef Anholt RR. Olfactomedin proteins: central players in development and disease. Front cell Dev Biology. 2014;2:6.CrossRef
16.
go back to reference Sultana A, Nakaya N, Dong L, Abu-Asab M, Qian H, Tomarev SI. Deletion of olfactomedin 2 induces changes in the AMPA receptor complex and impairs visual, olfactory, and motor functions in mice. Exp Neurol. 2014;261:802–11.CrossRefPubMed Sultana A, Nakaya N, Dong L, Abu-Asab M, Qian H, Tomarev SI. Deletion of olfactomedin 2 induces changes in the AMPA receptor complex and impairs visual, olfactory, and motor functions in mice. Exp Neurol. 2014;261:802–11.CrossRefPubMed
17.
go back to reference Shi N, Guo X, Chen SY. Olfactomedin 2, a novel regulator for transforming growth factor-β-induced smooth muscle differentiation of human embryonic stem cell-derived mesenchymal cells. Mol Biol Cell. 2014;25(25):4106–14.CrossRefPubMedPubMedCentral Shi N, Guo X, Chen SY. Olfactomedin 2, a novel regulator for transforming growth factor-β-induced smooth muscle differentiation of human embryonic stem cell-derived mesenchymal cells. Mol Biol Cell. 2014;25(25):4106–14.CrossRefPubMedPubMedCentral
18.
go back to reference Shi N, Li CX, Cui XB, Tomarev SI, Chen SY. Olfactomedin 2 regulates smooth muscle phenotypic modulation and vascular remodeling through mediating runt-related transcription factor 2 binding to serum response factor. Arterioscler Thromb Vasc Biol. 2017;37(3):446–54.CrossRefPubMedPubMedCentral Shi N, Li CX, Cui XB, Tomarev SI, Chen SY. Olfactomedin 2 regulates smooth muscle phenotypic modulation and vascular remodeling through mediating runt-related transcription factor 2 binding to serum response factor. Arterioscler Thromb Vasc Biol. 2017;37(3):446–54.CrossRefPubMedPubMedCentral
19.
go back to reference Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801.CrossRefPubMed Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767–801.CrossRefPubMed
20.
go back to reference Chen K, Wang Q, Liu X, Wang F, Yang Y, Tian X. Hypoxic pancreatic cancer derived exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expression. Int J Biol Sci. 2022;18(3):1220–37.CrossRefPubMedPubMedCentral Chen K, Wang Q, Liu X, Wang F, Yang Y, Tian X. Hypoxic pancreatic cancer derived exosomal miR-30b-5p promotes tumor angiogenesis by inhibiting GJA1 expression. Int J Biol Sci. 2022;18(3):1220–37.CrossRefPubMedPubMedCentral
21.
go back to reference Zhang R, Ye J, Huang H, Du X. Mining featured biomarkers associated with vascular invasion in HCC by bioinformatics analysis with TCGA RNA sequencing data. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2019;118:109274.CrossRef Zhang R, Ye J, Huang H, Du X. Mining featured biomarkers associated with vascular invasion in HCC by bioinformatics analysis with TCGA RNA sequencing data. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2019;118:109274.CrossRef
22.
go back to reference Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019;18(1):101.CrossRefPubMedPubMedCentral Chen HT, Liu H, Mao MJ, Tan Y, Mo XQ, Meng XJ, Cao MT, Zhong CY, Liu Y, Shan H, et al. Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy. Mol Cancer. 2019;18(1):101.CrossRefPubMedPubMedCentral
23.
go back to reference Tan Z, Sun W, Li Y, Jiao X, Zhu M, Zhang J, Qing C, Jia Y. Current progress of EMT: a New Direction of targeted therapy for Colorectal Cancer with Invasion and Metastasis. Biomolecules 2022, 12(12). Tan Z, Sun W, Li Y, Jiao X, Zhu M, Zhang J, Qing C, Jia Y. Current progress of EMT: a New Direction of targeted therapy for Colorectal Cancer with Invasion and Metastasis. Biomolecules 2022, 12(12).
25.
go back to reference Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of cadherins in Cancer-A Review. Int J Mol Sci 2020, 21(20). Kaszak I, Witkowska-Piłaszewicz O, Niewiadomska Z, Dworecka-Kaszak B, Ngosa Toka F, Jurka P. Role of cadherins in Cancer-A Review. Int J Mol Sci 2020, 21(20).
26.
go back to reference Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:18.CrossRefPubMedPubMedCentral Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:18.CrossRefPubMedPubMedCentral
27.
go back to reference Yan X, Yan L, Liu S, Shan Z, Tian Y, Jin Z. N-cadherin, a novel prognostic biomarker, drives malignant progression of colorectal cancer. Mol Med Rep. 2015;12(2):2999–3006.CrossRefPubMed Yan X, Yan L, Liu S, Shan Z, Tian Y, Jin Z. N-cadherin, a novel prognostic biomarker, drives malignant progression of colorectal cancer. Mol Med Rep. 2015;12(2):2999–3006.CrossRefPubMed
28.
go back to reference Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs. 2007;16(4):451–65.CrossRefPubMed Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs. 2007;16(4):451–65.CrossRefPubMed
29.
go back to reference Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells. 2019;8(10). Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells. 2019;8(10).
30.
go back to reference Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 2014;50(1):1–6.CrossRefPubMedPubMedCentral Kidd ME, Shumaker DK, Ridge KM. The role of vimentin intermediate filaments in the progression of lung cancer. Am J Respir Cell Mol Biol. 2014;50(1):1–6.CrossRefPubMedPubMedCentral
31.
go back to reference Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: good alone, bad together. Sem Cancer Biol. 2022;86(Pt 3):816–26.CrossRef Kuburich NA, den Hollander P, Pietz JT, Mani SA. Vimentin and cytokeratin: good alone, bad together. Sem Cancer Biol. 2022;86(Pt 3):816–26.CrossRef
35.
go back to reference Xiao J, Zhou N, Li Y, Xiao Y, Chen W, Ye J, Ma T, Zhang Y. PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2020;130:110743.CrossRef Xiao J, Zhou N, Li Y, Xiao Y, Chen W, Ye J, Ma T, Zhang Y. PEITC inhibits the invasion and migration of colorectal cancer cells by blocking TGF-β-induced EMT. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2020;130:110743.CrossRef
36.
go back to reference Yang HJ, Liu GL, Liu B, Liu T. GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway. J Cell Mol Med. 2018;22(3):1650–65.CrossRefPubMedPubMedCentral Yang HJ, Liu GL, Liu B, Liu T. GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway. J Cell Mol Med. 2018;22(3):1650–65.CrossRefPubMedPubMedCentral
37.
go back to reference Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated epithelial-mesenchymal transition and Cancer metastasis. Int J Mol Sci 2019, 20(11). Hao Y, Baker D, Ten Dijke P. TGF-β-Mediated epithelial-mesenchymal transition and Cancer metastasis. Int J Mol Sci 2019, 20(11).
39.
go back to reference Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–72.CrossRefPubMed Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–72.CrossRefPubMed
Metadata
Title
OLFM2 promotes epithelial-mesenchymal transition, migration, and invasion in colorectal cancer through the TGF-β/Smad signaling pathway
Authors
Yong Tang
Yi Liu
Xiaobo Wang
Haiyang Guo
Lin Chen
Guangbing Hu
Yutong Cui
Shiqi Liang
Ji Zuo
Zichen Luo
Xinrui Chen
Xianfei Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-11925-3

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine