Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Colorectal Cancer | Research

Anticancer potential of Carica papaya Linn black seed extract against human colon cancer cell line: in vitro study

Authors: Nadia S. Mahrous, Enas A. Noseer

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Since cancer is one of the most prevalent diseases in the world, further studies are needed to identify the effective therapeutic modalities. The second deadliest and third most common cancer is colorectal cancer (CRC). Papaya (Carica papaya Linn) seeds offer anti-cancer properties that can cure various types of cancer, such as liver and prostate cancer.

Methods

The study aimed to evaluate the anti-cancer activity of Carica papaya seed extract on colorectal cancer cell lines (Caco-2) and used techniques to assess the anti-cancer potential. The effectiveness of SE on cell proliferation and the viability of HTB-37 Caco-2 and C-166 cells were assessed using the MTT test. Real-time RT-PCR was used to measure gene expression levels and evaluate the activity of genes involved in apoptosis, including caspase-3, p53, Cycs, and Bcl-2. Finally, flow cytometry was used to analyze apoptosis induction by detecting changes in cell morphology and DNA content.

Results

The study showed that the MTT reduction assay was dependent on cancer cell type and concentration of SE compared to the control cells and C-166, with a mean IC50 value of 9.734 ug/ml. The cytotoxicity was accompanied by some morphological alterations in the colorectal cancer cell line (Caco-2). The expression of the genes for p53, Cycs, and caspase-3 was substantially up-regulated, while Bcl-2 was dramatically down-regulated compared to control cells. The cell cycle arrested at the G2-M phase and the presence of early and late apoptotic characteristics post-treatment increased the apoptotic profile.

Conclusion

It concluded that papaya seeds aqueous extract could act as a novel therapeutic option for colorectal cancer (CRC).
Literature
1.
go back to reference Adel A, Elnaggar MS, Albohy A, Elrashedy AA, Mostafa A, Kutkat O, et al. Evaluation of antiviral activity of Carica papaya leaves against SARS-CoV-2 assisted by metabolomic profiling. RSC Adv. 2022;12:32844–52.CrossRefPubMedPubMedCentral Adel A, Elnaggar MS, Albohy A, Elrashedy AA, Mostafa A, Kutkat O, et al. Evaluation of antiviral activity of Carica papaya leaves against SARS-CoV-2 assisted by metabolomic profiling. RSC Adv. 2022;12:32844–52.CrossRefPubMedPubMedCentral
2.
go back to reference Gnanamangai BM, Ramachandran G, Maruthupandy M, Priya VM, Karthikeyan G, Mothana RA, et al. Bioactive compounds coated 2D scaffold from seeds of Carica papaya for bacterial and parasitic skin infections. Physiol Mol Plant Pathol. 2022;117:101778.CrossRef Gnanamangai BM, Ramachandran G, Maruthupandy M, Priya VM, Karthikeyan G, Mothana RA, et al. Bioactive compounds coated 2D scaffold from seeds of Carica papaya for bacterial and parasitic skin infections. Physiol Mol Plant Pathol. 2022;117:101778.CrossRef
3.
go back to reference Koul B, Pudhuvai B, Sharma C, Kumar A, Sharma V, Yadav D, et al. Carica papaya L.: a tropical fruit with benefits beyond the Tropics. Diversity. 2022;14:683.CrossRef Koul B, Pudhuvai B, Sharma C, Kumar A, Sharma V, Yadav D, et al. Carica papaya L.: a tropical fruit with benefits beyond the Tropics. Diversity. 2022;14:683.CrossRef
4.
go back to reference Saha S, Giri TK. Breaking the barrier of cancer through papaya extract and their formulation. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem Agents). 2019;19:1577–87.CrossRef Saha S, Giri TK. Breaking the barrier of cancer through papaya extract and their formulation. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem Agents). 2019;19:1577–87.CrossRef
5.
go back to reference Kong YR, Jong YX, Balakrishnan M, Bok ZK, Weng JKK, Tay KC, et al. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology (Basel). 2021;10:287.PubMed Kong YR, Jong YX, Balakrishnan M, Bok ZK, Weng JKK, Tay KC, et al. Beneficial role of Carica papaya extracts and phytochemicals on oxidative stress and related diseases: a mini review. Biology (Basel). 2021;10:287.PubMed
6.
go back to reference Anilkumar A, Bhanu A. In vitro anticancer activity of “Methanolic extract of papaya blackseeds”(MPB) in Hep G2 cell lines and its effect in the regulation of bcl-2, caspase-3 and p53 gene expression. Adv Cancer Biol. 2022;4:100025. Anilkumar A, Bhanu A. In vitro anticancer activity of “Methanolic extract of papaya blackseeds”(MPB) in Hep G2 cell lines and its effect in the regulation of bcl-2, caspase-3 and p53 gene expression. Adv Cancer Biol. 2022;4:100025.
7.
go back to reference Pathak N, Khan S, Bhargava A, Raghuram GV, Jain D, Panwar H, et al. Cancer chemopreventive effects of the flavonoid-rich fraction isolated from papaya seeds. Nutr Cancer. 2014;66:857–71.CrossRefPubMed Pathak N, Khan S, Bhargava A, Raghuram GV, Jain D, Panwar H, et al. Cancer chemopreventive effects of the flavonoid-rich fraction isolated from papaya seeds. Nutr Cancer. 2014;66:857–71.CrossRefPubMed
8.
go back to reference Rahmat A, Rosli R, Zain W, Endrini S, Sani HA. Antiproliferative activity of pure lycopene compared to both extracted lycopene and juices from watermelon (Citrullus vulgaris) and papaya (Carica papaya) on human breast and liver cancer cell lines. J Med Sci. 2002;2:55–8.CrossRef Rahmat A, Rosli R, Zain W, Endrini S, Sani HA. Antiproliferative activity of pure lycopene compared to both extracted lycopene and juices from watermelon (Citrullus vulgaris) and papaya (Carica papaya) on human breast and liver cancer cell lines. J Med Sci. 2002;2:55–8.CrossRef
9.
go back to reference Alotaibi KS, Li H, Rafi R, Siddiqui RA. Papaya black seeds have beneficial anticancer effects on PC-3 prostate cancer cells. J Cancer Metastasis Treat. 2017;3:161–8.CrossRef Alotaibi KS, Li H, Rafi R, Siddiqui RA. Papaya black seeds have beneficial anticancer effects on PC-3 prostate cancer cells. J Cancer Metastasis Treat. 2017;3:161–8.CrossRef
10.
go back to reference Santana LF, Inada AC, Espirito Santo BLSdo, Filiú WFO, Pott A, Alves FM, et al. Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients. 2019;11:1608.CrossRefPubMedPubMedCentral Santana LF, Inada AC, Espirito Santo BLSdo, Filiú WFO, Pott A, Alves FM, et al. Nutraceutical potential of Carica papaya in metabolic syndrome. Nutrients. 2019;11:1608.CrossRefPubMedPubMedCentral
12.
go back to reference Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterol Rev Gastroenterol. 2019;14:89–103.CrossRef Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterol Rev Gastroenterol. 2019;14:89–103.CrossRef
13.
go back to reference Ricchi P, Zarrilli R, Di Palma A, Acquaviva AM. Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br J Cancer. 2003;88:803–7.CrossRefPubMedPubMedCentral Ricchi P, Zarrilli R, Di Palma A, Acquaviva AM. Nonsteroidal anti-inflammatory drugs in colorectal cancer: from prevention to therapy. Br J Cancer. 2003;88:803–7.CrossRefPubMedPubMedCentral
14.
go back to reference Zeng J, Li X, Wang X, Zhang K, Wang Y, Kang H, et al. Cadmium and lead mixtures are less toxic to the chinese medicinal plant Ligusticum chuanxiong Hort. Than either metal alone. Ecotoxicol Environ Saf. 2020;193:110342.CrossRefPubMed Zeng J, Li X, Wang X, Zhang K, Wang Y, Kang H, et al. Cadmium and lead mixtures are less toxic to the chinese medicinal plant Ligusticum chuanxiong Hort. Than either metal alone. Ecotoxicol Environ Saf. 2020;193:110342.CrossRefPubMed
15.
go back to reference Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol. 2021;:1721. Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol. 2021;:1721.
16.
go back to reference Wen L, Liu L, Li J, Tong L, Zhang K, Zhang Q, et al. NDRG4 protects against cerebral ischemia injury by inhibiting p53-mediated apoptosis. Brain Res Bull. 2019;146:104–11.CrossRefPubMed Wen L, Liu L, Li J, Tong L, Zhang K, Zhang Q, et al. NDRG4 protects against cerebral ischemia injury by inhibiting p53-mediated apoptosis. Brain Res Bull. 2019;146:104–11.CrossRefPubMed
17.
go back to reference Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMed Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.CrossRefPubMed
18.
go back to reference Kuo H-M, Chang L-S, Lin Y-L, Lu H-F, Yang J-S, Lee J-H, et al. Morin inhibits the growth of human leukemia HL-60 cells via cell cycle arrest and induction of apoptosis through mitochondria dependent pathway. Anticancer Res. 2007;27:395–405.PubMed Kuo H-M, Chang L-S, Lin Y-L, Lu H-F, Yang J-S, Lee J-H, et al. Morin inhibits the growth of human leukemia HL-60 cells via cell cycle arrest and induction of apoptosis through mitochondria dependent pathway. Anticancer Res. 2007;27:395–405.PubMed
19.
go back to reference Verhoven B, Schlegel R, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995;182:1597–601.CrossRefPubMed Verhoven B, Schlegel R, Williamson P. Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med. 1995;182:1597–601.CrossRefPubMed
21.
go back to reference Wang G, Reed E, Li QQ. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer. Oncol Rep. 2004;12:955–65.PubMed Wang G, Reed E, Li QQ. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer. Oncol Rep. 2004;12:955–65.PubMed
22.
go back to reference García-Solís P, Yahia EM, Morales-Tlalpan V, Díaz-Muñoz M. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in Mexico on the breast cancer cell line MCF-7. Int J Food Sci Nutr. 2009;60:32–46.CrossRefPubMed García-Solís P, Yahia EM, Morales-Tlalpan V, Díaz-Muñoz M. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in Mexico on the breast cancer cell line MCF-7. Int J Food Sci Nutr. 2009;60:32–46.CrossRefPubMed
23.
go back to reference Nakamura Y, Yoshimoto M, Murata Y, Shimoishi Y, Asai Y, Park EY, et al. Papaya seed represents a rich source of biologically active isothiocyanate. J Agric Food Chem. 2007;55:4407–13.CrossRefPubMed Nakamura Y, Yoshimoto M, Murata Y, Shimoishi Y, Asai Y, Park EY, et al. Papaya seed represents a rich source of biologically active isothiocyanate. J Agric Food Chem. 2007;55:4407–13.CrossRefPubMed
24.
go back to reference do Prado SBR, Santos GRC, Mourão PAS, Fabi JP. Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. Int J Biol Macromol. 2019;126:170–8.CrossRefPubMed do Prado SBR, Santos GRC, Mourão PAS, Fabi JP. Chelate-soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. Int J Biol Macromol. 2019;126:170–8.CrossRefPubMed
25.
go back to reference Liao W-L, Lin J-Y, Shieh J-C, Yeh H-F, Hsieh Y-H, Cheng Y-C, et al. Induction of G2/M phase arrest by diosgenin via activation of Chk1 kinase and Cdc25C regulatory pathways to promote apoptosis in human breast cancer cells. Int J Mol Sci. 2019;21:172.CrossRefPubMedPubMedCentral Liao W-L, Lin J-Y, Shieh J-C, Yeh H-F, Hsieh Y-H, Cheng Y-C, et al. Induction of G2/M phase arrest by diosgenin via activation of Chk1 kinase and Cdc25C regulatory pathways to promote apoptosis in human breast cancer cells. Int J Mol Sci. 2019;21:172.CrossRefPubMedPubMedCentral
26.
go back to reference Murad H, Hawat M, Ekhtiar A, AlJapawe A, Abbas A, Darwish H, et al. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int. 2016;16:1–11.CrossRef Murad H, Hawat M, Ekhtiar A, AlJapawe A, Abbas A, Darwish H, et al. Induction of G1-phase cell cycle arrest and apoptosis pathway in MDA-MB-231 human breast cancer cells by sulfated polysaccharide extracted from Laurencia papillosa. Cancer Cell Int. 2016;16:1–11.CrossRef
27.
go back to reference Kello M, Takac P, Kubatka P, Kuruc T, Petrova K, Mojzis J. Oxidative stress-induced DNA damage and apoptosis in clove buds-treated MCF-7 cells. Biomolecules. 2020;10:139.CrossRefPubMedPubMedCentral Kello M, Takac P, Kubatka P, Kuruc T, Petrova K, Mojzis J. Oxidative stress-induced DNA damage and apoptosis in clove buds-treated MCF-7 cells. Biomolecules. 2020;10:139.CrossRefPubMedPubMedCentral
28.
go back to reference Somanah J, Bourdon E, Bahorun T. Extracts of Mauritian Carica papaya (var. Solo) protect SW872 and HepG2 cells against hydrogen peroxide induced oxidative stress. J Food Sci Technol. 2017;54:1917–27.CrossRefPubMedPubMedCentral Somanah J, Bourdon E, Bahorun T. Extracts of Mauritian Carica papaya (var. Solo) protect SW872 and HepG2 cells against hydrogen peroxide induced oxidative stress. J Food Sci Technol. 2017;54:1917–27.CrossRefPubMedPubMedCentral
29.
go back to reference Singh O, Ali M. Phytochemical and antifungal profiles of the seeds of Carica papaya L. Indian J Pharm Sci. 2011;73:447.PubMedPubMedCentral Singh O, Ali M. Phytochemical and antifungal profiles of the seeds of Carica papaya L. Indian J Pharm Sci. 2011;73:447.PubMedPubMedCentral
30.
go back to reference Hussar P. Apoptosis regulators Bcl-2 and Caspase-3. Encyclopedia. 2022;2:1624–36.CrossRef Hussar P. Apoptosis regulators Bcl-2 and Caspase-3. Encyclopedia. 2022;2:1624–36.CrossRef
31.
go back to reference Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020;11:1–17.CrossRef Hu L, Chen M, Chen X, Zhao C, Fang Z, Wang H, et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 2020;11:1–17.CrossRef
33.
go back to reference Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, et al. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun. 2022;13:1–18.CrossRef Lopez A, Reyna DE, Gitego N, Kopp F, Zhou H, Miranda-Roman MA, et al. Co-targeting of BAX and BCL-XL proteins broadly overcomes resistance to apoptosis in cancer. Nat Commun. 2022;13:1–18.CrossRef
34.
go back to reference Madinah N, Nozmo M, Ezekiel I. The protective effects of aqueous extract of Carica papaya seeds in paracetamol induced nephrotoxicity in male wistar rats. Afr Health Sci. 2015;15:598–605.CrossRef Madinah N, Nozmo M, Ezekiel I. The protective effects of aqueous extract of Carica papaya seeds in paracetamol induced nephrotoxicity in male wistar rats. Afr Health Sci. 2015;15:598–605.CrossRef
35.
go back to reference Ayotunde EO, Ofem BO. Acute and chronic toxicity of pawpaw (CaAyotunde, E. O., Ofem BO. (2008). Acute and chronic toxicity of pawpaw (Carica papaya) seed powder to adult Nile tilapia (Oreochromis niloticus Linne 1757). African Journal of Biotechnology, 7(13).rica papaya). African J Biotechnol. 2008;7. Ayotunde EO, Ofem BO. Acute and chronic toxicity of pawpaw (CaAyotunde, E. O., Ofem BO. (2008). Acute and chronic toxicity of pawpaw (Carica papaya) seed powder to adult Nile tilapia (Oreochromis niloticus Linne 1757). African Journal of Biotechnology, 7(13).rica papaya). African J Biotechnol. 2008;7.
36.
go back to reference Saba S, Pattan N. The potential health benefits of Papaya Seeds. Int J Res Appl Sci Eng Technol. 2022;10:44–50.CrossRef Saba S, Pattan N. The potential health benefits of Papaya Seeds. Int J Res Appl Sci Eng Technol. 2022;10:44–50.CrossRef
37.
go back to reference Nguyen T-H, Padalhin AR, Seo HS, Lee B-T. A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility. J Biomater Sci Polym Ed. 2013;24:1692–706.CrossRefPubMed Nguyen T-H, Padalhin AR, Seo HS, Lee B-T. A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility. J Biomater Sci Polym Ed. 2013;24:1692–706.CrossRefPubMed
Metadata
Title
Anticancer potential of Carica papaya Linn black seed extract against human colon cancer cell line: in vitro study
Authors
Nadia S. Mahrous
Enas A. Noseer
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04085-7

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue