Skip to main content
Top
Published in: Brain Structure and Function 1/2019

01-01-2019 | Original Article

Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21

Authors: Caroline Magnain, Jean C. Augustinack, Lee Tirrell, Morgan Fogarty, Matthew P. Frosch, David Boas, Bruce Fischl, Kathleen S. Rockland

Published in: Brain Structure and Function | Issue 1/2019

Login to get access

Abstract

Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e., 1.25 µm) and is capable of detecting neurons. In a previous report, we compared the correspondence of OCM acquired imaging of neurons with traditional Nissl stained histology in entorhinal cortex layer II. In the current method-oriented study, we aimed to determine the colocalization success rate between OCM and Nissl in other brain cortical areas with different laminar arrangements and cell packing density. We focused on two additional cortical areas: medial prefrontal, pre-genual Brodmann area (BA) 32 and lateral temporal BA 21. We present the data as colocalization matrices and as quantitative percentages. The overall average colocalization in OCM compared to Nissl was 67% for BA 32 (47% for Nissl colocalization) and 60% for BA 21 (52% for Nissl colocalization), but with a large variability across cases and layers. One source of variability and confounds could be ascribed to an obscuring effect from large and dense intracortical fiber bundles. Other technical challenges, including obstacles inherent to human brain tissue, are discussed. Despite limitations, OCM is a promising semi-high throughput tool for demonstrating detail at the neuronal level, and, with further development, has distinct potential for the automatic acquisition of large databases as are required for the human brain.
Literature
go back to reference An L, Li P, Shen TT, Wang R (2011) High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed Opt Express 2(10):2770–2783CrossRefPubMedPubMedCentral An L, Li P, Shen TT, Wang R (2011) High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed Opt Express 2(10):2770–2783CrossRefPubMedPubMedCentral
go back to reference Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRefPubMed Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259CrossRefPubMed
go back to reference Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius Barth, Leipzig Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Johann Ambrosius Barth, Leipzig
go back to reference Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, Nicholas R, Van Vlierberghe E, Van Hecke W, Searle G, Santos-Ribeiro A, Matthews PM (2017) Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 140(11):2927–2938. https://doi.org/10.1093/brain/awx228 CrossRefPubMed Datta G, Colasanti A, Rabiner EA, Gunn RN, Malik O, Ciccarelli O, Nicholas R, Van Vlierberghe E, Van Hecke W, Searle G, Santos-Ribeiro A, Matthews PM (2017) Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain 140(11):2927–2938. https://​doi.​org/​10.​1093/​brain/​awx228 CrossRefPubMed
go back to reference Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA, Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N, Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van der Kouwe A, Varjabedian A, Write M, Zollei L, Dang C, Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P, Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ, Hof PR, Fischl B, Lein ES (2016) Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 524(16):3127–3481. https://doi.org/10.1002/cne.24080 CrossRefPubMedPubMedCentral Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BA, Lesnar P, Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA, Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N, Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van der Kouwe A, Varjabedian A, Write M, Zollei L, Dang C, Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P, Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ, Hof PR, Fischl B, Lein ES (2016) Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 524(16):3127–3481. https://​doi.​org/​10.​1002/​cne.​24080 CrossRefPubMedPubMedCentral
go back to reference Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen
go back to reference Gabbott PL, Warner TA, Jays PR, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993(1–2):59–71CrossRefPubMed Gabbott PL, Warner TA, Jays PR, Bacon SJ (2003) Areal and synaptic interconnectivity of prelimbic (area 32), infralimbic (area 25) and insular cortices in the rat. Brain Res 993(1–2):59–71CrossRefPubMed
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefPubMedPubMedCentral Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA et al (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefPubMedPubMedCentral
go back to reference Lee KS, Hur H, Bae JY, Kim IJ, Kim DU, Nam KH, Kim G-H, Chang KS (2018) High speed parallel spectral-domain OCT using spectrally encoded line-field illumination. Appl Phys Lett 112(4):041102CrossRef Lee KS, Hur H, Bae JY, Kim IJ, Kim DU, Nam KH, Kim G-H, Chang KS (2018) High speed parallel spectral-domain OCT using spectrally encoded line-field illumination. Appl Phys Lett 112(4):041102CrossRef
go back to reference Lu CD, Waheed NK, Witkin A, Baumal CR, Liu JJ, Potsaid B, Duker JS (2018) Microscope-integrated intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging. Ophthalmic Surg Lasers Imaging Retina 49(2):94–102CrossRefPubMedPubMedCentral Lu CD, Waheed NK, Witkin A, Baumal CR, Liu JJ, Potsaid B, Duker JS (2018) Microscope-integrated intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging. Ophthalmic Surg Lasers Imaging Retina 49(2):94–102CrossRefPubMedPubMedCentral
go back to reference Mai JK, Paxinos G (eds) (2011) The human nervous system. Academic Press, Cambridge, United States Mai JK, Paxinos G (eds) (2011) The human nervous system. Academic Press, Cambridge, United States
go back to reference Pircher M, Götzinger E, Leitgeb RA, Fercher AF, Hitzenberger CK (2003) Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 8(3):565–570CrossRefPubMed Pircher M, Götzinger E, Leitgeb RA, Fercher AF, Hitzenberger CK (2003) Speckle reduction in optical coherence tomography by frequency compounding. J Biomed Opt 8(3):565–570CrossRefPubMed
go back to reference Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG (2008) Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express 16(19):15149–15169CrossRefPubMed Potsaid B, Gorczynska I, Srinivasan VJ, Chen Y, Jiang J, Cable A, Fujimoto JG (2008) Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt Express 16(19):15149–15169CrossRefPubMed
go back to reference Schmitt JM, Xiang SH, Yung KM (1999) Speckle in optical coherence tomography: an overview. In: Saratov fall meeting'98: light scattering technologies for mechanics, biomedicine, and material science, vol 3726, International society for optics and photonics, pp 450–462 Schmitt JM, Xiang SH, Yung KM (1999) Speckle in optical coherence tomography: an overview. In: Saratov fall meeting'98: light scattering technologies for mechanics, biomedicine, and material science, vol 3726, International society for optics and photonics, pp 450–462
go back to reference van Soest G, Regar E, van der Steen AF, Villiger ML, Tearney GJ, Bouma BE (2012) Frequency domain multiplexing for speckle reduction in optical coherence tomography. J Biomed Opt 17(7):076018PubMed van Soest G, Regar E, van der Steen AF, Villiger ML, Tearney GJ, Bouma BE (2012) Frequency domain multiplexing for speckle reduction in optical coherence tomography. J Biomed Opt 17(7):076018PubMed
go back to reference Tsai TH, Potsaid B, Tao YK, Jayaraman V, Jiang J, Heim PJ, Kraus MF, Zhou C, Hornegger J, Mashimo H, Cable AE, Fujimoto JG (2013) Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed Opt Express 4(7):1119–1132CrossRefPubMedPubMedCentral Tsai TH, Potsaid B, Tao YK, Jayaraman V, Jiang J, Heim PJ, Kraus MF, Zhou C, Hornegger J, Mashimo H, Cable AE, Fujimoto JG (2013) Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed Opt Express 4(7):1119–1132CrossRefPubMedPubMedCentral
go back to reference Wang H, Magnain C, Sakadžić S, Fischl B, Boas DA (2017b) Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography. Biomed Opt Express 8(12):5617–5636CrossRefPubMedPubMedCentral Wang H, Magnain C, Sakadžić S, Fischl B, Boas DA (2017b) Characterizing the optical properties of human brain tissue with high numerical aperture optical coherence tomography. Biomed Opt Express 8(12):5617–5636CrossRefPubMedPubMedCentral
go back to reference Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing API: a technical report on ITK—the insight toolkit. Stud Health Technol Inform 85:586–592PubMed Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing API: a technical report on ITK—the insight toolkit. Stud Health Technol Inform 85:586–592PubMed
Metadata
Title
Colocalization of neurons in optical coherence microscopy and Nissl-stained histology in Brodmann’s area 32 and area 21
Authors
Caroline Magnain
Jean C. Augustinack
Lee Tirrell
Morgan Fogarty
Matthew P. Frosch
David Boas
Bruce Fischl
Kathleen S. Rockland
Publication date
01-01-2019
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1777-z

Other articles of this Issue 1/2019

Brain Structure and Function 1/2019 Go to the issue