Skip to main content
Top
Published in: BMC Medicine 1/2013

Open Access 01-12-2013 | Research article

Collectives of diagnostic biomarkers identify high-risk subpopulations of hematuria patients: exploiting heterogeneity in large-scale biomarker data

Authors: Frank Emmert-Streib, Funso Abogunrin, Ricardo de Matos Simoes, Brian Duggan, Mark W Ruddock, Cherith N Reid, Owen Roddy, Lisa White, Hugh F O'Kane, Declan O'Rourke, Neil H Anderson, Thiagarajan Nambirajan, Kate E Williamson

Published in: BMC Medicine | Issue 1/2013

Login to get access

Abstract

Background

Ineffective risk stratification can delay diagnosis of serious disease in patients with hematuria. We applied a systems biology approach to analyze clinical, demographic and biomarker measurements (n = 29) collected from 157 hematuric patients: 80 urothelial cancer (UC) and 77 controls with confounding pathologies.

Methods

On the basis of biomarkers, we conducted agglomerative hierarchical clustering to identify patient and biomarker clusters. We then explored the relationship between the patient clusters and clinical characteristics using Chi-square analyses. We determined classification errors and areas under the receiver operating curve of Random Forest Classifiers (RFC) for patient subpopulations using the biomarker clusters to reduce the dimensionality of the data.

Results

Agglomerative clustering identified five patient clusters and seven biomarker clusters. Final diagnoses categories were non-randomly distributed across the five patient clusters. In addition, two of the patient clusters were enriched with patients with 'low cancer-risk' characteristics. The biomarkers which contributed to the diagnostic classifiers for these two patient clusters were similar. In contrast, three of the patient clusters were significantly enriched with patients harboring 'high cancer-risk" characteristics including proteinuria, aggressive pathological stage and grade, and malignant cytology. Patients in these three clusters included controls, that is, patients with other serious disease and patients with cancers other than UC. Biomarkers which contributed to the diagnostic classifiers for the largest 'high cancer- risk' cluster were different than those contributing to the classifiers for the 'low cancer-risk' clusters. Biomarkers which contributed to subpopulations that were split according to smoking status, gender and medication were different.

Conclusions

The systems biology approach applied in this study allowed the hematuric patients to cluster naturally on the basis of the heterogeneity within their biomarker data, into five distinct risk subpopulations. Our findings highlight an approach with the promise to unlock the potential of biomarkers. This will be especially valuable in the field of diagnostic bladder cancer where biomarkers are urgently required. Clinicians could interpret risk classification scores in the context of clinical parameters at the time of triage. This could reduce cystoscopies and enable priority diagnosis of aggressive diseases, leading to improved patient outcomes at reduced costs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mostafid H, Persad R, Kockelbergh R, Fawcett D: Is it time to re-design the hematuria clinic?. BJU Int. 2010, 105: 585-588. 10.1111/j.1464-410X.2009.09108.x.CrossRefPubMed Mostafid H, Persad R, Kockelbergh R, Fawcett D: Is it time to re-design the hematuria clinic?. BJU Int. 2010, 105: 585-588. 10.1111/j.1464-410X.2009.09108.x.CrossRefPubMed
2.
go back to reference Jacobs BL, Lee CT, Montie JE: Bladder cancer in 2010: how far have we come?. CA Cancer J Clin. 2010, 60: 244-272. 10.3322/caac.20077.CrossRefPubMed Jacobs BL, Lee CT, Montie JE: Bladder cancer in 2010: how far have we come?. CA Cancer J Clin. 2010, 60: 244-272. 10.3322/caac.20077.CrossRefPubMed
3.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA Cancer J Clin. 2011, 61: 69-90. 10.3322/caac.20107.CrossRefPubMed
4.
go back to reference Kulkarni GS, Finelli A, Fleshner NE, Jewett MA, Lopushinsky SR, Alibhai SM: Optimal management of high-risk T1G3 bladder cancer: a decision analysis. PLoS Med. 2007, 4: e284-10.1371/journal.pmed.0040284.CrossRefPubMedPubMedCentral Kulkarni GS, Finelli A, Fleshner NE, Jewett MA, Lopushinsky SR, Alibhai SM: Optimal management of high-risk T1G3 bladder cancer: a decision analysis. PLoS Med. 2007, 4: e284-10.1371/journal.pmed.0040284.CrossRefPubMedPubMedCentral
5.
go back to reference van der Aa MN, Steyerberg EW, Bangma C, van Rhijn BW, Zwarthoff EC, van der Kwast TH: Cystoscopy revisited as the gold standard for detecting bladder cancer recurrence: diagnostic review bias in the randomized, prospective CEFUB trial. J Urol. 2010, 183: 76-80. 10.1016/j.juro.2009.08.150.CrossRefPubMed van der Aa MN, Steyerberg EW, Bangma C, van Rhijn BW, Zwarthoff EC, van der Kwast TH: Cystoscopy revisited as the gold standard for detecting bladder cancer recurrence: diagnostic review bias in the randomized, prospective CEFUB trial. J Urol. 2010, 183: 76-80. 10.1016/j.juro.2009.08.150.CrossRefPubMed
6.
go back to reference Lotan Y, Elias K, Svatek RS, Bagrodia A, Nuss G, Moran B, Sagalowsky AI: Bladder cancer screening in a high risk asymptomatic population using a point of care urine based protein tumor marker. J Urol. 2009, 182: 52-57. 10.1016/j.juro.2009.02.142.CrossRefPubMed Lotan Y, Elias K, Svatek RS, Bagrodia A, Nuss G, Moran B, Sagalowsky AI: Bladder cancer screening in a high risk asymptomatic population using a point of care urine based protein tumor marker. J Urol. 2009, 182: 52-57. 10.1016/j.juro.2009.02.142.CrossRefPubMed
7.
go back to reference Kinders R, Jones T, Root R, Bruce C, Murchison H, Corey M, Williams L, Enfield D, Hass GM: Complement factor H or a related protein is a marker for transitional cell cancer of the bladder. Clin Cancer Res. 1998, 4: 2511-2520.PubMed Kinders R, Jones T, Root R, Bruce C, Murchison H, Corey M, Williams L, Enfield D, Hass GM: Complement factor H or a related protein is a marker for transitional cell cancer of the bladder. Clin Cancer Res. 1998, 4: 2511-2520.PubMed
8.
go back to reference Johnston B, Morales A, Emerson L, Lundie M: Rapid detection of bladder cancer: a comparative study of point of care tests. J Urol. 1997, 158: 2098-2101. 10.1016/S0022-5347(01)68166-7.CrossRefPubMed Johnston B, Morales A, Emerson L, Lundie M: Rapid detection of bladder cancer: a comparative study of point of care tests. J Urol. 1997, 158: 2098-2101. 10.1016/S0022-5347(01)68166-7.CrossRefPubMed
9.
go back to reference Abogunrin F, O'Kane HF, Ruddock MW, Stevenson M, Reid CN, O'Sullivan JM, Anderson NH, O'Rourke D, Duggan B, Lamont JV, Boyd RE, Hamilton P, Nambirajan T, Williamson KE: The impact of biomarkers in multivariate algorithms for bladder cancer diagnosis in patients with hematuria. Cancer. 2011, 118: 2641-2650.CrossRefPubMed Abogunrin F, O'Kane HF, Ruddock MW, Stevenson M, Reid CN, O'Sullivan JM, Anderson NH, O'Rourke D, Duggan B, Lamont JV, Boyd RE, Hamilton P, Nambirajan T, Williamson KE: The impact of biomarkers in multivariate algorithms for bladder cancer diagnosis in patients with hematuria. Cancer. 2011, 118: 2641-2650.CrossRefPubMed
10.
go back to reference Leibovici D, Grossman HB, Dinney CP, Millikan RE, Lerner S, Wang Y, Gu J, Dong Q, Wu X: Polymorphisms in inflammation genes and bladder cancer: from initiation to recurrence, progression, and survival. J Clin Oncol. 2005, 23: 5746-5756. 10.1200/JCO.2005.01.598.CrossRefPubMed Leibovici D, Grossman HB, Dinney CP, Millikan RE, Lerner S, Wang Y, Gu J, Dong Q, Wu X: Polymorphisms in inflammation genes and bladder cancer: from initiation to recurrence, progression, and survival. J Clin Oncol. 2005, 23: 5746-5756. 10.1200/JCO.2005.01.598.CrossRefPubMed
11.
go back to reference Margel D, Pesvner-Fischer M, Baniel J, Yossepowitch O, Cohen IR: Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. Eur Urol. 2011, 59: 113-119. 10.1016/j.eururo.2010.10.008.CrossRefPubMed Margel D, Pesvner-Fischer M, Baniel J, Yossepowitch O, Cohen IR: Stress proteins and cytokines are urinary biomarkers for diagnosis and staging of bladder cancer. Eur Urol. 2011, 59: 113-119. 10.1016/j.eururo.2010.10.008.CrossRefPubMed
12.
go back to reference Vidal M: A unifying view of 21st century systems biology. FEBS Lett. 2009, 583: 3891-3894. 10.1016/j.febslet.2009.11.024.CrossRefPubMed Vidal M: A unifying view of 21st century systems biology. FEBS Lett. 2009, 583: 3891-3894. 10.1016/j.febslet.2009.11.024.CrossRefPubMed
13.
go back to reference Emmert-Streib F, Glazko GV: Network biology: a direct approach to study biological function. Wiley Interdiscip Rev Syst Biol Med. 2011, 3: 379-391. 10.1002/wsbm.134.CrossRefPubMed Emmert-Streib F, Glazko GV: Network biology: a direct approach to study biological function. Wiley Interdiscip Rev Syst Biol Med. 2011, 3: 379-391. 10.1002/wsbm.134.CrossRefPubMed
14.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet HC, Standards for Reporting of Diagnostic Accuracy: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin Chem. 2003, 49: 1-6. 10.1373/49.1.1.CrossRefPubMed Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, de Vet HC, Standards for Reporting of Diagnostic Accuracy: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for Reporting of Diagnostic Accuracy. Clin Chem. 2003, 49: 1-6. 10.1373/49.1.1.CrossRefPubMed
15.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Moher D, Rennie D, de Vet HC, Lijmer JG, Standards for Reporting of Diagnostic Accuracy: The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem. 2003, 49: 7-18. 10.1373/49.1.7.CrossRefPubMed Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Moher D, Rennie D, de Vet HC, Lijmer JG, Standards for Reporting of Diagnostic Accuracy: The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem. 2003, 49: 7-18. 10.1373/49.1.7.CrossRefPubMed
16.
go back to reference Barratt J, Topham P: Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ. 2007, 177: 361-368. 10.1503/cmaj.061590.CrossRefPubMedPubMedCentral Barratt J, Topham P: Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ. 2007, 177: 361-368. 10.1503/cmaj.061590.CrossRefPubMedPubMedCentral
17.
go back to reference Fitzgerald SP, Lamont JV, McConnell RI, Benchikh el O: Development of a high-throughput automated analyzer using biochip array technology. Clin Chem. 2005, 51: 1165-1176. 10.1373/clinchem.2005.049429.CrossRefPubMed Fitzgerald SP, Lamont JV, McConnell RI, Benchikh el O: Development of a high-throughput automated analyzer using biochip array technology. Clin Chem. 2005, 51: 1165-1176. 10.1373/clinchem.2005.049429.CrossRefPubMed
18.
go back to reference Theodoridis S: Pattern Recognition. 2003, Amsterdam; London: Academic Press, 2 Theodoridis S: Pattern Recognition. 2003, Amsterdam; London: Academic Press, 2
19.
go back to reference Breiman L: Bagging predictors. Machine Learning. 1996, 24: 123-140. Breiman L: Bagging predictors. Machine Learning. 1996, 24: 123-140.
20.
go back to reference Zhang H, Singer BH: Recursive Partitioning and Applications. 2010, New York: SpringerCrossRef Zhang H, Singer BH: Recursive Partitioning and Applications. 2010, New York: SpringerCrossRef
22.
go back to reference Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE: Biomarkers in chronic kidney disease: a review. Kidney Int. 2011, 80: 806-821. 10.1038/ki.2011.198.CrossRefPubMed Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE: Biomarkers in chronic kidney disease: a review. Kidney Int. 2011, 80: 806-821. 10.1038/ki.2011.198.CrossRefPubMed
23.
24.
go back to reference Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A: Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008, 108: 389-397. 10.1007/s10549-007-9619-3.CrossRefPubMed Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N, Friedl A: Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat. 2008, 108: 389-397. 10.1007/s10549-007-9619-3.CrossRefPubMed
25.
go back to reference Perkovic V, Verdon C, Ninomiya T, Barzi F, Cass A, Patel A, Jardine M, Gallagher M, Turnbull F, Chalmers J, Craig J, Huxley R: The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med. 2008, 5: e207-10.1371/journal.pmed.0050207.CrossRefPubMedPubMedCentral Perkovic V, Verdon C, Ninomiya T, Barzi F, Cass A, Patel A, Jardine M, Gallagher M, Turnbull F, Chalmers J, Craig J, Huxley R: The relationship between proteinuria and coronary risk: a systematic review and meta-analysis. PLoS Med. 2008, 5: e207-10.1371/journal.pmed.0050207.CrossRefPubMedPubMedCentral
26.
go back to reference Mason RA, Morlock EV, Karagas MR, Kelsey KT, Marsit CJ, Schned AR, Andrew AS: EGFR pathway polymorphisms and bladder cancer susceptibility and prognosis. Carcinogenesis. 2009, 30: 1155-1160. 10.1093/carcin/bgp077.CrossRefPubMedPubMedCentral Mason RA, Morlock EV, Karagas MR, Kelsey KT, Marsit CJ, Schned AR, Andrew AS: EGFR pathway polymorphisms and bladder cancer susceptibility and prognosis. Carcinogenesis. 2009, 30: 1155-1160. 10.1093/carcin/bgp077.CrossRefPubMedPubMedCentral
27.
go back to reference McShane LM: Statistical challenges in the development and evaluation of marker-based clinical tests. BMC Medicine. 2012, 10: 52-10.1186/1741-7015-10-52.CrossRefPubMedPubMedCentral McShane LM: Statistical challenges in the development and evaluation of marker-based clinical tests. BMC Medicine. 2012, 10: 52-10.1186/1741-7015-10-52.CrossRefPubMedPubMedCentral
28.
go back to reference Marchio C, Dowsett M, Reis-Filho JS: Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box. BMC Medicine. 2011, 9: 41-10.1186/1741-7015-9-41.CrossRefPubMedPubMedCentral Marchio C, Dowsett M, Reis-Filho JS: Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box. BMC Medicine. 2011, 9: 41-10.1186/1741-7015-9-41.CrossRefPubMedPubMedCentral
29.
go back to reference Ferrante di Ruffano L, Hyde CJ, McCaffery KJ, Bossuyt PM, Deeks JJ: Assessing the value of diagnostic tests: a framework for designing and evaluating trials. BMJ. 2012, 344: e686-10.1136/bmj.e686.CrossRefPubMed Ferrante di Ruffano L, Hyde CJ, McCaffery KJ, Bossuyt PM, Deeks JJ: Assessing the value of diagnostic tests: a framework for designing and evaluating trials. BMJ. 2012, 344: e686-10.1136/bmj.e686.CrossRefPubMed
30.
go back to reference Liu ET: Systems Biomedicine. 2010, Boston: Academic Press Liu ET: Systems Biomedicine. 2010, Boston: Academic Press
Metadata
Title
Collectives of diagnostic biomarkers identify high-risk subpopulations of hematuria patients: exploiting heterogeneity in large-scale biomarker data
Authors
Frank Emmert-Streib
Funso Abogunrin
Ricardo de Matos Simoes
Brian Duggan
Mark W Ruddock
Cherith N Reid
Owen Roddy
Lisa White
Hugh F O'Kane
Declan O'Rourke
Neil H Anderson
Thiagarajan Nambirajan
Kate E Williamson
Publication date
01-12-2013
Publisher
BioMed Central
Published in
BMC Medicine / Issue 1/2013
Electronic ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-11-12

Other articles of this Issue 1/2013

BMC Medicine 1/2013 Go to the issue