Skip to main content
Top
Published in: Chinese Medicine 1/2019

Open Access 01-12-2019 | Collagen | Research

The crude ethanol extract of Periplaneta americana L. stimulates wound healing in vitro & in vivo

Authors: Long-Jian Li, Mao-Ze Wang, Tie-Jun Yuan, Xue-Han Xu, Haseeb Anwar Dad, Chui-Liang Yu, Jian Hou, Li-Hua Peng

Published in: Chinese Medicine | Issue 1/2019

Login to get access

Abstract

Periplaneta americana L. is a Traditional Chinese Medicine that has been used in clinic treatment of various diseases for a long history. However, the therapeutic potential and the underlying mechanism of Periplaneta americana L. in the skin wound therapy was not investigated comprehensively yet. This study aims to investigate the influence of the crude ethanol extract of PAL in the different wound stages including: (1) the migration and chemotaxis to skin cells in the first stage; (2) proliferation and cells cycle of skin cells in the second stage; (3) remodeling effect and secretion of growth factors, collagens in the third stage; (4) as well as the influence in the blood vessels regeneration in the late stage. The crude ethanol extract of PAL was shown to (1) promote the keratinocytes proliferation and regulate the cells cycle of fibroblasts significantly; (2) stimulate the migration of keratinocytes and fibroblasts obviously; (3) enhance the EGF and VEGF secretion both in vitro & in vivo; (4) accelerate the wound healing, collagen synthesis and angiogenesis. The crude ethanol extract of KFX was shown a promising therapeutic agent for the wound therapy with great efficacy to accelerate the wound healing with improved quality.
Literature
1.
go back to reference Adolphe C, Wainwright B. Pathways to improving skin regeneration. Expert Rev Mol Med. 2005;7(20):1.CrossRef Adolphe C, Wainwright B. Pathways to improving skin regeneration. Expert Rev Mol Med. 2005;7(20):1.CrossRef
2.
go back to reference Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2003;9(71):283–9. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2003;9(71):283–9.
3.
go back to reference Peng LH, Huang YF, Zhang CZ, Niu J, Chen Y, Chu Y, et al. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials. 2016;103:137–49.CrossRef Peng LH, Huang YF, Zhang CZ, Niu J, Chen Y, Chu Y, et al. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials. 2016;103:137–49.CrossRef
4.
go back to reference Peng LH, Niu J, Zhang CZ, Yu W, Wu JH, Shan YH, et al. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials. 2014;35(21):5605–18.CrossRef Peng LH, Niu J, Zhang CZ, Yu W, Wu JH, Shan YH, et al. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials. 2014;35(21):5605–18.CrossRef
5.
go back to reference Wu M, Li Y, Guo D, Gang K, Li B, Deng Y, et al. Microbial diversity of chronic wound and successful management of traditional chinese medicine. Evid Based Complement Alternat Med. 2018;2018:9463295.PubMedPubMedCentral Wu M, Li Y, Guo D, Gang K, Li B, Deng Y, et al. Microbial diversity of chronic wound and successful management of traditional chinese medicine. Evid Based Complement Alternat Med. 2018;2018:9463295.PubMedPubMedCentral
6.
go back to reference Jiao CX, Liu GM, Zhou P. Research progress and staus of the Chinese traditional patent medicine of Kangfuxin. Lishizhen Med Mater Med Res. 2008;19:2623–4. Jiao CX, Liu GM, Zhou P. Research progress and staus of the Chinese traditional patent medicine of Kangfuxin. Lishizhen Med Mater Med Res. 2008;19:2623–4.
7.
go back to reference Tam JC, Lau KM, Liu CL, To MH, Kwok HF, Lai KK, et al. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. J Ethnopharmacol. 2011;134(3):831–8.CrossRef Tam JC, Lau KM, Liu CL, To MH, Kwok HF, Lai KK, et al. The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. J Ethnopharmacol. 2011;134(3):831–8.CrossRef
8.
go back to reference Zhang C, Barrios MP, Alani RM, Cabodi M, Wong JY. A microfluidic transwell to study chemotaxis. Exp Cell Res. 2016;342(2):159–65.CrossRef Zhang C, Barrios MP, Alani RM, Cabodi M, Wong JY. A microfluidic transwell to study chemotaxis. Exp Cell Res. 2016;342(2):159–65.CrossRef
9.
go back to reference Sato Y, Rifkin DB. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol. 1988;107(3):1199–205.CrossRef Sato Y, Rifkin DB. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol. 1988;107(3):1199–205.CrossRef
10.
go back to reference Peng LH, Mao ZY, Qi XT, Chen X, Li N, Tabata Y, et al. Transplantation of bone-marrow-derived mesenchymal and epidermal stem cells contribute to wound healing with different regenerative features. Cell Tissue Res. 2013;352(3):573–83.CrossRef Peng LH, Mao ZY, Qi XT, Chen X, Li N, Tabata Y, et al. Transplantation of bone-marrow-derived mesenchymal and epidermal stem cells contribute to wound healing with different regenerative features. Cell Tissue Res. 2013;352(3):573–83.CrossRef
11.
go back to reference Lu D, Wang K, Wang S, Zhang B, Liu Q, Zhang Q, et al. Beneficial effects of renal denervation on cardiac angiogenesis in rats with prolonged pressure overload. Acta Physiol. 2017;220(1):47.CrossRef Lu D, Wang K, Wang S, Zhang B, Liu Q, Zhang Q, et al. Beneficial effects of renal denervation on cardiac angiogenesis in rats with prolonged pressure overload. Acta Physiol. 2017;220(1):47.CrossRef
12.
go back to reference Zheng Z, Zhang X, Dang C, Beanes S, Chang GX, Chen Y, et al. Fibromodulin is essential for fetal-type scarless cutaneous wound healing. Am J Pathol. 2016;186(11):2824–32.CrossRef Zheng Z, Zhang X, Dang C, Beanes S, Chang GX, Chen Y, et al. Fibromodulin is essential for fetal-type scarless cutaneous wound healing. Am J Pathol. 2016;186(11):2824–32.CrossRef
13.
go back to reference Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370–8.CrossRef Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 2015;173(2):370–8.CrossRef
14.
go back to reference Peng LH, Tsang SY, Tabata Y, Gao JQ. Genetically-manipulated adult stem cells as therapeutic agents and gene delivery vehicle for wound repair and regeneration. J Control Release. 2012;157(3):321–30.CrossRef Peng LH, Tsang SY, Tabata Y, Gao JQ. Genetically-manipulated adult stem cells as therapeutic agents and gene delivery vehicle for wound repair and regeneration. J Control Release. 2012;157(3):321–30.CrossRef
15.
go back to reference Zaccaria RA. A laboratory classroom exercise: cell migration in cutaneous wound healing and pigmentary pattern formation in the red-spotted newt. Int J Dev Biol. 1996;40(4):897.PubMed Zaccaria RA. A laboratory classroom exercise: cell migration in cutaneous wound healing and pigmentary pattern formation in the red-spotted newt. Int J Dev Biol. 1996;40(4):897.PubMed
16.
go back to reference Feng Z, Wagatsuma Y, Kikuchi M, Kosawada T, Nakamura T, Sato D, et al. The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts. Biomaterials. 2014;35(28):8078–91.CrossRef Feng Z, Wagatsuma Y, Kikuchi M, Kosawada T, Nakamura T, Sato D, et al. The mechanisms of fibroblast-mediated compaction of collagen gels and the mechanical niche around individual fibroblasts. Biomaterials. 2014;35(28):8078–91.CrossRef
17.
go back to reference Laato M, Niinikoski J, Lundberg C, Arfors KE. Effect of epidermal growth factor (EGF) on experimental granulation tissue. J Surg Res. 1986;41(3):252–5.CrossRef Laato M, Niinikoski J, Lundberg C, Arfors KE. Effect of epidermal growth factor (EGF) on experimental granulation tissue. J Surg Res. 1986;41(3):252–5.CrossRef
18.
go back to reference Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Rd CL, et al. Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med. 1989;321(2):76–9.CrossRef Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Rd CL, et al. Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med. 1989;321(2):76–9.CrossRef
19.
go back to reference White LA, Mitchell TI, Brinckerhoff CE. Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochem Biophys Acta. 2000;1490(3):259–68.PubMed White LA, Mitchell TI, Brinckerhoff CE. Transforming growth factor beta inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochem Biophys Acta. 2000;1490(3):259–68.PubMed
20.
go back to reference Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy and wound healing—past, present and future perspectives. Surgeon. 2008;6(3):172–7.CrossRef Hardwicke J, Schmaljohann D, Boyce D, Thomas D. Epidermal growth factor therapy and wound healing—past, present and future perspectives. Surgeon. 2008;6(3):172–7.CrossRef
21.
go back to reference Kieran MW, Kalluri R, Cho YJ. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med. 2012;2(12):a006593.CrossRef Kieran MW, Kalluri R, Cho YJ. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med. 2012;2(12):a006593.CrossRef
22.
go back to reference Chen J, De S, Brainard J, Byzova TV. Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes. 2003;11(1):1–11.CrossRef Chen J, De S, Brainard J, Byzova TV. Metastatic properties of prostate cancer cells are controlled by VEGF. Cell Commun Adhes. 2003;11(1):1–11.CrossRef
23.
go back to reference Monaco JL, Lawrence WT. Acute wound healing an overview. Clin Plast Surg. 2003;30(1):1–12.CrossRef Monaco JL, Lawrence WT. Acute wound healing an overview. Clin Plast Surg. 2003;30(1):1–12.CrossRef
24.
go back to reference Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. Birth Defects Res Part C Embryo Today Rev. 2013;96(4):325–33.CrossRef Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. Birth Defects Res Part C Embryo Today Rev. 2013;96(4):325–33.CrossRef
Metadata
Title
The crude ethanol extract of Periplaneta americana L. stimulates wound healing in vitro & in vivo
Authors
Long-Jian Li
Mao-Ze Wang
Tie-Jun Yuan
Xue-Han Xu
Haseeb Anwar Dad
Chui-Liang Yu
Jian Hou
Li-Hua Peng
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Collagen
Published in
Chinese Medicine / Issue 1/2019
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-019-0259-4

Other articles of this Issue 1/2019

Chinese Medicine 1/2019 Go to the issue