Skip to main content
Top
Published in: Virology Journal 1/2017

Open Access 01-12-2017 | Research

Coinfection with Haemophilus parasuis serovar 4 increases the virulence of porcine circovirus type 2 in piglets

Authors: Shuqing Liu, Wentao Li, Yang Wang, Changqin Gu, Xiaoli Liu, Catherine Charreyre, Shenxian Fan, Qigai He

Published in: Virology Journal | Issue 1/2017

Login to get access

Abstract

Background

Postweaning multisystemic wasting syndrome (PMWS) is an emerging disease in swine. Pigs with PMWS are often infected with a variety of other pathogens, including bacteria, viruses and mycoplasm, in addition to porcine circovirus type 2 (PCV2). PCV2 and Haemophilus parasuis serovar 4 (HPS4) coinfection remain epidemic in China.

Methods

Here we report construction of a three-week-old naturally farrowed, colostrum-deprived (NFCD) piglet’s infection model and demonstrate that PCV2-infected piglets with the HPS4 coinfection increased the virulence of PCV2 and these pathogens interact acquired PMWS.

Results

All the single infected piglets were transiently bacteremic or viremic. All the PCV2/HPS4 coinfected piglets developed PMWS, characterized by dyspnea, anorexia, prostration and lose weight severely. Co-infection with PCV2 and HPS4 resulted in an increased amount of virus in serum and tissues, presented a slower generation and lower levels of antibodies against PCV2. Co-infection with PCV2 and HPS4 resulted in further reductions in total and differential peripheral blood leukocyte counts. Meantime, PCV2/ HPS4 coinfection potentiated the severity of lung and lymphoid lesions by PCV2-associated, increased the virulence of PCV2-antigen and enhanced the incidence of PMWS in piglets.

Conclusion

Co-infection with PCV2 and HPS4 induce the exacerbation of system injuries and enhance the pathogenicity of PCV2 in piglets.
Literature
1.
go back to reference Bolin SR, Stoffregen WC, Nayar GP. Postweaning multisystemic wasting syndrome induced after experimental inoculation of cesarean-derived, colostrum-deprived piglets with type 2 porcine circovirus. J Vet Diagn Investig. 2001;13:185–94.CrossRef Bolin SR, Stoffregen WC, Nayar GP. Postweaning multisystemic wasting syndrome induced after experimental inoculation of cesarean-derived, colostrum-deprived piglets with type 2 porcine circovirus. J Vet Diagn Investig. 2001;13:185–94.CrossRef
2.
go back to reference Ellis JA, Bratanich A, Clark EG, et al. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J Vet Diagn Investig. 2000;12:21–7.CrossRef Ellis JA, Bratanich A, Clark EG, et al. Coinfection by porcine circoviruses and porcine parvovirus in pigs with naturally acquired postweaning multisystemic wasting syndrome. J Vet Diagn Investig. 2000;12:21–7.CrossRef
3.
go back to reference Allan GM, Ellis JA. Porcine circoviruses: a review. J Vet Diagn Investig. 2000;12:3–14.CrossRef Allan GM, Ellis JA. Porcine circoviruses: a review. J Vet Diagn Investig. 2000;12:3–14.CrossRef
4.
go back to reference Choi C, Chae C. Colocalization of porcine reproductive and respiratory syndrome virus and porcine circovirus 2 in porcine dermatitis and nephropathy syndrome by double-labeling technique. Vet Pathol. 2001;38:436–41.CrossRefPubMed Choi C, Chae C. Colocalization of porcine reproductive and respiratory syndrome virus and porcine circovirus 2 in porcine dermatitis and nephropathy syndrome by double-labeling technique. Vet Pathol. 2001;38:436–41.CrossRefPubMed
5.
go back to reference Kim J, Chung HK, Jung T. Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, microscopic lesions and coexisting microorganisms. J Vet Med Sci. 2002;64(1):57–62.CrossRefPubMed Kim J, Chung HK, Jung T. Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, microscopic lesions and coexisting microorganisms. J Vet Med Sci. 2002;64(1):57–62.CrossRefPubMed
6.
go back to reference Ru’bies X, Kielstein P, Costs LI. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997. Vet Microbiol. 1999;66:245–8.CrossRef Ru’bies X, Kielstein P, Costs LI. Prevalence of Haemophilus parasuis serovars isolated in Spain from 1993 to 1997. Vet Microbiol. 1999;66:245–8.CrossRef
7.
go back to reference Solano GI, Segales J, Collins JE. Porcine reproductive and respiratory syndrome virus (PRRSv) interaction with Haemophilus parasuis. Vet Microbiol. 1997;55:247–57.CrossRefPubMed Solano GI, Segales J, Collins JE. Porcine reproductive and respiratory syndrome virus (PRRSv) interaction with Haemophilus parasuis. Vet Microbiol. 1997;55:247–57.CrossRefPubMed
8.
go back to reference Cai X, Chen H, Blackall PJ, et al. Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol. 2005;111:231–6.CrossRefPubMed Cai X, Chen H, Blackall PJ, et al. Serological characterization of Haemophilus parasuis isolates from China. Vet Microbiol. 2005;111:231–6.CrossRefPubMed
9.
go back to reference Li JX, Jiang P, Wang Y, et al. Genotyping of Haemophilus parasuis from diseased pigs in China and prevalence of two coexisting virus pathogens. Prev Vet Med. 2009;91(2):274–9.CrossRefPubMed Li JX, Jiang P, Wang Y, et al. Genotyping of Haemophilus parasuis from diseased pigs in China and prevalence of two coexisting virus pathogens. Prev Vet Med. 2009;91(2):274–9.CrossRefPubMed
10.
go back to reference Harms PA, Sorden SD, Halbur PG, et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol. 2001;38:528–39.CrossRefPubMed Harms PA, Sorden SD, Halbur PG, et al. Experimental reproduction of severe disease in CD/CD pigs concurrently infected with type 2 porcine circovirus and porcine reproductive and respiratory syndrome virus. Vet Pathol. 2001;38:528–39.CrossRefPubMed
11.
go back to reference Ju CM, Fan HY, Tan YD, et al. Immunogenicity of a recombinant pseudorabies virus expressing ORF1-ORF2 fusion protein of porcine circovirus type 2. Vet Microbiol. 2005;109(3):179–90.CrossRefPubMed Ju CM, Fan HY, Tan YD, et al. Immunogenicity of a recombinant pseudorabies virus expressing ORF1-ORF2 fusion protein of porcine circovirus type 2. Vet Microbiol. 2005;109(3):179–90.CrossRefPubMed
12.
go back to reference Olvera A, Sibila M, Calsamiglia M. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome naturally affected pigs. J Virol Methods. 2004;117(1):75–80.CrossRefPubMed Olvera A, Sibila M, Calsamiglia M. Comparison of porcine circovirus type 2 load in serum quantified by a real time PCR in postweaning multisystemic wasting syndrome and porcine dermatitis and nephropathy syndrome naturally affected pigs. J Virol Methods. 2004;117(1):75–80.CrossRefPubMed
13.
go back to reference Oliveira S, Blackall PJ, Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by serotyping and genotyping. Am J Vet Res. 2003;64:435–42.CrossRefPubMed Oliveira S, Blackall PJ, Pijoan C. Characterization of the diversity of Haemophilus parasuis field isolates by serotyping and genotyping. Am J Vet Res. 2003;64:435–42.CrossRefPubMed
14.
go back to reference Tadjine M, Mittal KR, Bourdon S. Development of a new serological test for serotyping Haemophilus parasuis isolates and determination of their prevalence in North America. J Clin Microbiol. 2004;24:839–40.CrossRef Tadjine M, Mittal KR, Bourdon S. Development of a new serological test for serotyping Haemophilus parasuis isolates and determination of their prevalence in North America. J Clin Microbiol. 2004;24:839–40.CrossRef
15.
go back to reference Yuan F, Fu S, Hu J, et al. Evaluation of recombinant proteins of Haemophilus parasuis strain SH0165 asvaccine candidates in a mouse model. Res Vet Sci. 2012;93:51–6.CrossRefPubMed Yuan F, Fu S, Hu J, et al. Evaluation of recombinant proteins of Haemophilus parasuis strain SH0165 asvaccine candidates in a mouse model. Res Vet Sci. 2012;93:51–6.CrossRefPubMed
16.
go back to reference Chang HW, Pang VF, Chen LJ. Bacterial lipopolysaccharide induces porcine circovirus type 2 replication in swine alveolar macrophages. Vet Microbiol. 2006;115(4):311–9.CrossRefPubMed Chang HW, Pang VF, Chen LJ. Bacterial lipopolysaccharide induces porcine circovirus type 2 replication in swine alveolar macrophages. Vet Microbiol. 2006;115(4):311–9.CrossRefPubMed
17.
go back to reference Rosell C, Segales J, Plana-Duran J, et al. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol. 1999;120(1):59–78.CrossRefPubMed Rosell C, Segales J, Plana-Duran J, et al. Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol. 1999;120(1):59–78.CrossRefPubMed
18.
go back to reference Nielsen J, Vincent IE, Botner A, et al. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunop. 2003;92(3):97–111.CrossRef Nielsen J, Vincent IE, Botner A, et al. Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunop. 2003;92(3):97–111.CrossRef
19.
go back to reference Shi KC, Li HR, Guo X, et al. Changes in peripheral blood leukocyte subpopulations in piglets co-infected experimentally with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Vet Microbiol. 2008;129(3):367–77.CrossRefPubMed Shi KC, Li HR, Guo X, et al. Changes in peripheral blood leukocyte subpopulations in piglets co-infected experimentally with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Vet Microbiol. 2008;129(3):367–77.CrossRefPubMed
20.
go back to reference Krakowka S, Ellis JA, Meehan B, et al. Viral wasting syndrome of swine: experimental reproduction of Postweaning multisystemic wasting syndrome in Gnotobiotic swine by Coinfection with porcine Circovirus 2 and porcine parvovirus. Vet Pathol. 2000;37:254–63.CrossRefPubMed Krakowka S, Ellis JA, Meehan B, et al. Viral wasting syndrome of swine: experimental reproduction of Postweaning multisystemic wasting syndrome in Gnotobiotic swine by Coinfection with porcine Circovirus 2 and porcine parvovirus. Vet Pathol. 2000;37:254–63.CrossRefPubMed
21.
go back to reference Segales J, Rosell C, Domingo M. Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol. 2004;98:137–49.CrossRefPubMed Segales J, Rosell C, Domingo M. Pathological findings associated with naturally acquired porcine circovirus type 2 associated disease. Vet Microbiol. 2004;98:137–49.CrossRefPubMed
22.
go back to reference Yu S, Opriessnig T, Kitikoon P, et al. Porcine circovirus type 2 (PCV2) distribution and replication in tissues and immune cells in early infected pigs. Vet Immunol Immunopathol. 2007;115:261–72.CrossRefPubMed Yu S, Opriessnig T, Kitikoon P, et al. Porcine circovirus type 2 (PCV2) distribution and replication in tissues and immune cells in early infected pigs. Vet Immunol Immunopathol. 2007;115:261–72.CrossRefPubMed
23.
go back to reference ShibaharaT SK, Ishikawa Y, et al. Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. J Vet Med Sci. 2000;62:1125–31.CrossRef ShibaharaT SK, Ishikawa Y, et al. Porcine circovirus induces B lymphocyte depletion in pigs with wasting disease syndrome. J Vet Med Sci. 2000;62:1125–31.CrossRef
24.
go back to reference Segalés J, Domingo M, Chianini F, et al. Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet Microbiol. 2004;98:151–8.CrossRefPubMed Segalés J, Domingo M, Chianini F, et al. Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet Microbiol. 2004;98:151–8.CrossRefPubMed
25.
go back to reference Opriessnig T, Langohr I. Current state of knowledge on porcine circovirus type 2-associated lesions. Vet Pathol. 2013;50:23–38.CrossRefPubMed Opriessnig T, Langohr I. Current state of knowledge on porcine circovirus type 2-associated lesions. Vet Pathol. 2013;50:23–38.CrossRefPubMed
26.
go back to reference Allan GM, Kennedy S, McNeilly F, et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 1999:1:1-11. Allan GM, Kennedy S, McNeilly F, et al. Experimental reproduction of severe wasting disease by co-infection of pigs with porcine circovirus and porcine parvovirus. J Comp Pathol 1999:1:1-11.
27.
go back to reference Opriessnig T, Fenaux M, Yu S, et al. Effect of porcine parvovirus vaccination on the development of PMWS in segregated early weaned pigs coinfected with type 2 porcine circovirus and porcine parvovirus. Vet Microbiol. 2004a;3(4):209–20.CrossRef Opriessnig T, Fenaux M, Yu S, et al. Effect of porcine parvovirus vaccination on the development of PMWS in segregated early weaned pigs coinfected with type 2 porcine circovirus and porcine parvovirus. Vet Microbiol. 2004a;3(4):209–20.CrossRef
28.
go back to reference Allan GM, McNeilly F, Ellis J, et al. Experimental infection of colostrum deprived piglets withporcine circovirus 2 (PCV2) and porcine reproductive and respiratory syn-drome virus (PRRSV) potentiates PCV2 replication. Arch Virol. 2000a;145:2421–9.CrossRefPubMed Allan GM, McNeilly F, Ellis J, et al. Experimental infection of colostrum deprived piglets withporcine circovirus 2 (PCV2) and porcine reproductive and respiratory syn-drome virus (PRRSV) potentiates PCV2 replication. Arch Virol. 2000a;145:2421–9.CrossRefPubMed
29.
go back to reference Jung K, Kim J, Ha Y, et al. The effects of transplacental porcine circovirus type 2 infection on porcine epidemic diarrhoea virus-induced enteritis in preweaning piglets. VetJ. 2006;3:445–50.CrossRef Jung K, Kim J, Ha Y, et al. The effects of transplacental porcine circovirus type 2 infection on porcine epidemic diarrhoea virus-induced enteritis in preweaning piglets. VetJ. 2006;3:445–50.CrossRef
30.
go back to reference Ellis JA, Allan G, Krakowka S. Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobiotic pigs. Am J Vet Res. 2008;12:1608–14.CrossRef Ellis JA, Allan G, Krakowka S. Effect of coinfection with genogroup 1 porcine torque teno virus on porcine circovirus type 2-associated postweaning multisystemic wasting syndrome in gnotobiotic pigs. Am J Vet Res. 2008;12:1608–14.CrossRef
31.
go back to reference Darwich L, Segales J, Mateu E. Pathogenesis of postweaning multisystemic wasting syndrome caused by porcine circovirus 2: an immune riddle. Arch Virol. 2004;149(5):857–74.CrossRefPubMed Darwich L, Segales J, Mateu E. Pathogenesis of postweaning multisystemic wasting syndrome caused by porcine circovirus 2: an immune riddle. Arch Virol. 2004;149(5):857–74.CrossRefPubMed
32.
go back to reference Krakowka S, Ellis JA, McNeilly F, et al. Immunologic features of porcine circovirus type 2 infection. Viral Immunol. 2002;15(4):567–82.CrossRefPubMed Krakowka S, Ellis JA, McNeilly F, et al. Immunologic features of porcine circovirus type 2 infection. Viral Immunol. 2002;15(4):567–82.CrossRefPubMed
33.
go back to reference Marion K, Matthias R, Matthias E, et al. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine. 2008;26:3443–51.CrossRef Marion K, Matthias R, Matthias E, et al. Reduction of PMWS-associated clinical signs and co-infections by vaccination against PCV2. Vaccine. 2008;26:3443–51.CrossRef
34.
go back to reference Allan GM, McNeilly F, Kennedy S, et al. 2000b. Immunostimulation, PCV-2 and PMWS. Vet. Rec. 2000b;147:170–1. Allan GM, McNeilly F, Kennedy S, et al. 2000b. Immunostimulation, PCV-2 and PMWS. Vet. Rec. 2000b;147:170–1.
35.
go back to reference Rovira A, Balasch M, Segalés J, et al. Experimental inoculation of conventionalpigs with porcine reproductive and respiratory syndrome virus and porcinecircovirus 2. J Virol. 2002;76:3232–9.CrossRefPubMedPubMedCentral Rovira A, Balasch M, Segalés J, et al. Experimental inoculation of conventionalpigs with porcine reproductive and respiratory syndrome virus and porcinecircovirus 2. J Virol. 2002;76:3232–9.CrossRefPubMedPubMedCentral
36.
go back to reference Opriessnig T, Thacker EL, Yu S, et al. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet Pathol. 2004;41:624–40.CrossRefPubMed Opriessnig T, Thacker EL, Yu S, et al. Experimental reproduction of postweaning multisystemic wasting syndrome in pigs by dual infection with Mycoplasma hyopneumoniae and porcine circovirus type 2. Vet Pathol. 2004;41:624–40.CrossRefPubMed
37.
go back to reference Hai YW, Zhi XF, Yu ZW, et al. The effects of Mycoplasma hyopneumoniae on porcine circovirus type 2 replication in vitro PK-15 cells. ResVetSci. 2016;105:56–61. Hai YW, Zhi XF, Yu ZW, et al. The effects of Mycoplasma hyopneumoniae on porcine circovirus type 2 replication in vitro PK-15 cells. ResVetSci. 2016;105:56–61.
38.
go back to reference Opriessnig T, Madson DM, Roof M, et al. Experimental reproduction of porcine Circovirus type 2 (PCV2)-associated enteritis in pigs infected with PCV2 alone or concurrently with Lawsonia Intracellularis or salmonella typhimurium. J Comp Pathol. 2011;145:261–70.CrossRefPubMed Opriessnig T, Madson DM, Roof M, et al. Experimental reproduction of porcine Circovirus type 2 (PCV2)-associated enteritis in pigs infected with PCV2 alone or concurrently with Lawsonia Intracellularis or salmonella typhimurium. J Comp Pathol. 2011;145:261–70.CrossRefPubMed
39.
go back to reference Kollef MH, Eisenberg PR, Ohlendorf MF, et al. The accuracy of elevated concentrations of endotoxin in bronchoalveolar lavage fluid for the rapid diagnosis of gram-negative pneumonia. Am J Respir Crit Care Med. 1996;154:1020–8.CrossRefPubMed Kollef MH, Eisenberg PR, Ohlendorf MF, et al. The accuracy of elevated concentrations of endotoxin in bronchoalveolar lavage fluid for the rapid diagnosis of gram-negative pneumonia. Am J Respir Crit Care Med. 1996;154:1020–8.CrossRefPubMed
40.
go back to reference Pugin J, Auckenthaler R, Delaspre O, et al. Rapid diagnosis of gram negative pneumonia by assay of endotoxin in bronchoalveolar lavage fluid. Thorax. 1992;47:547–9.CrossRefPubMedPubMedCentral Pugin J, Auckenthaler R, Delaspre O, et al. Rapid diagnosis of gram negative pneumonia by assay of endotoxin in bronchoalveolar lavage fluid. Thorax. 1992;47:547–9.CrossRefPubMedPubMedCentral
41.
go back to reference Tu PY, Tsai PC, Lin YH, et al. Expression profile of Tolllike receptor mRNA in pigs co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Res Vet Sci. 2015;98:134–41.CrossRefPubMed Tu PY, Tsai PC, Lin YH, et al. Expression profile of Tolllike receptor mRNA in pigs co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Res Vet Sci. 2015;98:134–41.CrossRefPubMed
42.
go back to reference Van RK, Nauwynck H. Proinflammatory cytokines and viral respiratory disease in pigs. Vet Res. 2000;31:87–213.CrossRef Van RK, Nauwynck H. Proinflammatory cytokines and viral respiratory disease in pigs. Vet Res. 2000;31:87–213.CrossRef
43.
go back to reference Van GS, Van RK, Pensaert M. Interaction between porcine reproductive-respiratory syndrome virus and bacterial endotoxin in the lungs of pigs: potentiation of cytokine production and respiratory disease. J Clin Microbiol. 2003;41:960–6.CrossRef Van GS, Van RK, Pensaert M. Interaction between porcine reproductive-respiratory syndrome virus and bacterial endotoxin in the lungs of pigs: potentiation of cytokine production and respiratory disease. J Clin Microbiol. 2003;41:960–6.CrossRef
44.
go back to reference Song LQ, Li LF, Deng KB, et al. Porcine reproductive and respiratory syndrome virus and bacterial endotoxin act in synergy to amplify the inflammatory response of infected macrophages. Vet Microbiol. 2011;149:213–20.CrossRef Song LQ, Li LF, Deng KB, et al. Porcine reproductive and respiratory syndrome virus and bacterial endotoxin act in synergy to amplify the inflammatory response of infected macrophages. Vet Microbiol. 2011;149:213–20.CrossRef
45.
go back to reference Van HD, Pang YT, Pei CT, et al. Expression of toll-like receptor signaling-related genes in pigs co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.Res. Vet Sci. 2015;101:180–6.CrossRef Van HD, Pang YT, Pei CT, et al. Expression of toll-like receptor signaling-related genes in pigs co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.Res. Vet Sci. 2015;101:180–6.CrossRef
46.
go back to reference Fu S, Xu L, Li S, et al. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-kappaB) signaling during Haemophilus parasuis infection. Vet Res. 2016;47:80.CrossRefPubMedPubMedCentral Fu S, Xu L, Li S, et al. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-kappaB) signaling during Haemophilus parasuis infection. Vet Res. 2016;47:80.CrossRefPubMedPubMedCentral
47.
go back to reference Yu J, Wu J, Zhang Y, et al. Concurrent highly pathogenic porcine reproductive and respiratory syndrome virus infection accelerates Haemophilus parasuis infection in conventional pigs. Vet Microbiol. 2012;158:316–21.CrossRefPubMed Yu J, Wu J, Zhang Y, et al. Concurrent highly pathogenic porcine reproductive and respiratory syndrome virus infection accelerates Haemophilus parasuis infection in conventional pigs. Vet Microbiol. 2012;158:316–21.CrossRefPubMed
48.
go back to reference Cloward JM, Krause DC. Mycoplasma pneumoniae J-domain protein required for terminal organelle function. Mol Microbiol. 2009;71:1296–307.CrossRefPubMed Cloward JM, Krause DC. Mycoplasma pneumoniae J-domain protein required for terminal organelle function. Mol Microbiol. 2009;71:1296–307.CrossRefPubMed
49.
go back to reference Virginio VG, Gonchoroski T, Paes JA, et al. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia. Vaccine. 2014;32:5832–8.CrossRefPubMed Virginio VG, Gonchoroski T, Paes JA, et al. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia. Vaccine. 2014;32:5832–8.CrossRefPubMed
50.
go back to reference Yang W, Chong L, Ying F, et al. Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics. 2012;13:68.CrossRef Yang W, Chong L, Ying F, et al. Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis. BMC Genomics. 2012;13:68.CrossRef
51.
go back to reference Liu J, Bai J, Zhang L, et al. Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology. 2013;447:52–62.CrossRefPubMed Liu J, Bai J, Zhang L, et al. Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology. 2013;447:52–62.CrossRefPubMed
52.
go back to reference Nagy PD, Wang RY, Pogany J, et al. Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology. 2011;411:374–82.CrossRefPubMed Nagy PD, Wang RY, Pogany J, et al. Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology. 2011;411:374–82.CrossRefPubMed
Metadata
Title
Coinfection with Haemophilus parasuis serovar 4 increases the virulence of porcine circovirus type 2 in piglets
Authors
Shuqing Liu
Wentao Li
Yang Wang
Changqin Gu
Xiaoli Liu
Catherine Charreyre
Shenxian Fan
Qigai He
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2017
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0890-6

Other articles of this Issue 1/2017

Virology Journal 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.