Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2018

Open Access 01-12-2018 | Review

Coatings as the useful drug delivery system for the prevention of implant-related infections

Authors: Chenhao Pan, Zubin Zhou, Xiaowei Yu

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2018

Login to get access

Abstract

Implant-related infections (IRIs) which led to a large amount of medical expenditure were caused by bacteria and fungi that involve the implants in the operation or in ward. Traditional treatments of IRIs were comprised of repeated radical debridement, replacement of internal fixators, and intravenous antibiotics. It needed a long time and numbers of surgeries to cure, which meant a catastrophe to patients. So how to prevent it was more important than to cure it. As an excellent local release system, coating is a good idea by its local drug infusion and barrier effect on resisting biofilms which were the main cause of IRIs. So in this review, materials used for coatings and evidences of prevention were elaborated.
Literature
1.
go back to reference Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78. quiz 79-80PubMedCrossRef Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for prevention of surgical site infection, 1999. Hospital infection control practices advisory committee. Infect Control Hosp Epidemiol. 1999;20(4):250–78. quiz 79-80PubMedCrossRef
2.
go back to reference Richards JE, Kauffmann RM, Obremskey WT, May AK. Stress-induced hyperglycemia as a risk factor for surgical-site infection in nondiabetic orthopedic trauma patients admitted to the intensive care unit. J Orthop Trauma. 2013;27(1):16–21.PubMedPubMedCentralCrossRef Richards JE, Kauffmann RM, Obremskey WT, May AK. Stress-induced hyperglycemia as a risk factor for surgical-site infection in nondiabetic orthopedic trauma patients admitted to the intensive care unit. J Orthop Trauma. 2013;27(1):16–21.PubMedPubMedCentralCrossRef
3.
go back to reference Cook GE, Markel DC, Ren W, et al. Infection in orthopaedics. J Orthop Trauma. 2015;29(Suppl 12):S19–23.PubMedCrossRef Cook GE, Markel DC, Ren W, et al. Infection in orthopaedics. J Orthop Trauma. 2015;29(Suppl 12):S19–23.PubMedCrossRef
4.
go back to reference Edmiston CE, Spencer M, Lewis BD, et al. Reducing the risk of surgical site infections: did we really think SCIP was going to lead us to the promised land? Surg Infect. 2011;12(3):169–77.CrossRef Edmiston CE, Spencer M, Lewis BD, et al. Reducing the risk of surgical site infections: did we really think SCIP was going to lead us to the promised land? Surg Infect. 2011;12(3):169–77.CrossRef
5.
go back to reference Cataldo MA, Petrosillo N, Cipriani M, Cauda R, Tacconelli E. Prosthetic joint infection: recent developments in diagnosis and management. J Inf Secur. 2010;61(6):443–8. Cataldo MA, Petrosillo N, Cipriani M, Cauda R, Tacconelli E. Prosthetic joint infection: recent developments in diagnosis and management. J Inf Secur. 2010;61(6):443–8.
6.
go back to reference Williams DL, Haymond BS, Beck JP, et al. In vivo efficacy of a silicone–cationic steroid antimicrobial coating to prevent implant-related infection. Biomaterials. 2012 Nov;33(33):8641–56.PubMedPubMedCentralCrossRef Williams DL, Haymond BS, Beck JP, et al. In vivo efficacy of a silicone–cationic steroid antimicrobial coating to prevent implant-related infection. Biomaterials. 2012 Nov;33(33):8641–56.PubMedPubMedCentralCrossRef
7.
go back to reference Yilmaz C, Colak M, Yilmaz BC, et al. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am. 2013;95(2):117–25.PubMedCrossRef Yilmaz C, Colak M, Yilmaz BC, et al. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am. 2013;95(2):117–25.PubMedCrossRef
8.
go back to reference Drago L, De Vecchi E. Microbiological diagnosis of implant-related infections: scientific evidence and cost/benefit analysis of routine antibiofilm processing. Adv Exp Med Biol. 2017;971:51–67.PubMedCrossRef Drago L, De Vecchi E. Microbiological diagnosis of implant-related infections: scientific evidence and cost/benefit analysis of routine antibiofilm processing. Adv Exp Med Biol. 2017;971:51–67.PubMedCrossRef
9.
go back to reference Lovati AB, Bottagisio M, de Vecchi E, Gallazzi E, Drago L. Animal models of implant-related low-grade infections. A twenty-year review. Adv Exp Med Biol. 2017;971:29–50.PubMedCrossRef Lovati AB, Bottagisio M, de Vecchi E, Gallazzi E, Drago L. Animal models of implant-related low-grade infections. A twenty-year review. Adv Exp Med Biol. 2017;971:29–50.PubMedCrossRef
10.
go back to reference Romanò CL, Scarponi S, Gallazzi E, et al. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10:157.PubMedPubMedCentralCrossRef Romanò CL, Scarponi S, Gallazzi E, et al. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 2015;10:157.PubMedPubMedCentralCrossRef
11.
go back to reference Esteban J, Molina-Manso D, Spiliopoulou I, et al. Biofilm development by clinical isolates of Staphylococcus spp. from retrieved orthopedic prostheses. Acta Orthop. 2010;81(6):674–9.PubMedPubMedCentralCrossRef Esteban J, Molina-Manso D, Spiliopoulou I, et al. Biofilm development by clinical isolates of Staphylococcus spp. from retrieved orthopedic prostheses. Acta Orthop. 2010;81(6):674–9.PubMedPubMedCentralCrossRef
14.
go back to reference Buchholz HW, Elson RA, Engelbrecht E, et al. Management of deep infection of total hip replacement. J Bone Joint Surg Br. 1981;63-B(3):342–53.PubMedCrossRef Buchholz HW, Elson RA, Engelbrecht E, et al. Management of deep infection of total hip replacement. J Bone Joint Surg Br. 1981;63-B(3):342–53.PubMedCrossRef
15.
go back to reference Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22–39.PubMedCrossRef Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22–39.PubMedCrossRef
16.
go back to reference Vert M, Doi Y, Hellwich KH, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2014;63(11–12):377–410. Vert M, Doi Y, Hellwich KH, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem. 2014;63(11–12):377–410.
17.
go back to reference Zhou K, Yu H, Li J, et al. No difference in implant survivorship and clinical outcomes between full-cementless and full-cemented fixation in primary total knee arthroplasty: a systematic review and meta-analysis. Int J Surg. 2018;53:312–9.PubMedCrossRef Zhou K, Yu H, Li J, et al. No difference in implant survivorship and clinical outcomes between full-cementless and full-cemented fixation in primary total knee arthroplasty: a systematic review and meta-analysis. Int J Surg. 2018;53:312–9.PubMedCrossRef
19.
go back to reference Gkana EN, Doulgeraki AI, Chorianopoulos NG, Nychas GE. Anti-adhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens. Front Microbiol. 2017;11(8):1295.CrossRef Gkana EN, Doulgeraki AI, Chorianopoulos NG, Nychas GE. Anti-adhesion and anti-biofilm potential of organosilane nanoparticles against foodborne pathogens. Front Microbiol. 2017;11(8):1295.CrossRef
20.
go back to reference Merghni A, Bekir K, Kadmi Y, et al. Adhesiveness of opportunistic Staphylococcus aureus to materials used in dental office: in vitro study. Microb Pathog. 2017;103:129–34.PubMedCrossRef Merghni A, Bekir K, Kadmi Y, et al. Adhesiveness of opportunistic Staphylococcus aureus to materials used in dental office: in vitro study. Microb Pathog. 2017;103:129–34.PubMedCrossRef
21.
go back to reference Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Factories. 2016;15(1):165.CrossRef Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Factories. 2016;15(1):165.CrossRef
22.
go back to reference Wassmann T, Kreis S, Behr M, Buergers R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent. 2017;3(1):32.PubMedPubMedCentralCrossRef Wassmann T, Kreis S, Behr M, Buergers R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int J Implant Dent. 2017;3(1):32.PubMedPubMedCentralCrossRef
23.
go back to reference Liu P, Zhao Y, Yuan Z, et al. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion. Mater Sci Eng C Mater Biol Appl. 2017;75:998–1005.PubMedCrossRef Liu P, Zhao Y, Yuan Z, et al. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion. Mater Sci Eng C Mater Biol Appl. 2017;75:998–1005.PubMedCrossRef
24.
go back to reference Lorenzetti M, Dogša I, Stošicki T, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces. 2015;7(3):1644–51.PubMedCrossRef Lorenzetti M, Dogša I, Stošicki T, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces. 2015;7(3):1644–51.PubMedCrossRef
25.
go back to reference Poon CY, Bhushan B. Comparison of surface roughness measurements by stylus profiler, AFM and non-contact profiler. Wear. 1995;190:76–88.CrossRef Poon CY, Bhushan B. Comparison of surface roughness measurements by stylus profiler, AFM and non-contact profiler. Wear. 1995;190:76–88.CrossRef
26.
go back to reference Mabboux F, Ponsonnet L, Morrier JJ, Jaffrezic N, Barsotti O. Surface free energy and bacterial retention to saliva-coated dental implant materials—an in vitro study. Colloids Surf B Biointerfaces. 2004;25:199–205.CrossRef Mabboux F, Ponsonnet L, Morrier JJ, Jaffrezic N, Barsotti O. Surface free energy and bacterial retention to saliva-coated dental implant materials—an in vitro study. Colloids Surf B Biointerfaces. 2004;25:199–205.CrossRef
27.
go back to reference Weerkamp AH, van der Mei HC, Busscher HJ. The surface free energy of oral streptococci after being coated with saliva and its relation to adhesion in the mouth. J Dent Res. 1985;64:1204–10.PubMedCrossRef Weerkamp AH, van der Mei HC, Busscher HJ. The surface free energy of oral streptococci after being coated with saliva and its relation to adhesion in the mouth. J Dent Res. 1985;64:1204–10.PubMedCrossRef
28.
go back to reference Verran J, Taylor RL, Lees GC. Bacterial adhesion to inert thermoplastic surfaces. J Mater Sci Mater Med. 1996;7:597.CrossRef Verran J, Taylor RL, Lees GC. Bacterial adhesion to inert thermoplastic surfaces. J Mater Sci Mater Med. 1996;7:597.CrossRef
29.
go back to reference Atefyekta S, Ercan B, Karlsson J, et al. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomedicine. 2016;11:977–90.PubMedPubMedCentral Atefyekta S, Ercan B, Karlsson J, et al. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release. Int J Nanomedicine. 2016;11:977–90.PubMedPubMedCentral
30.
go back to reference Grivet M, Morrier JJ, Benay G, Barsotti O. Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J Mater Sci Mater Med. 2000;11:637–42.PubMedCrossRef Grivet M, Morrier JJ, Benay G, Barsotti O. Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J Mater Sci Mater Med. 2000;11:637–42.PubMedCrossRef
31.
go back to reference Alam F, Balani K. Adhesion force of staphylococcus aureus on various biomaterial surfaces. J Mech Behav Biomed Mater. 2017;65:872–80.PubMedCrossRef Alam F, Balani K. Adhesion force of staphylococcus aureus on various biomaterial surfaces. J Mech Behav Biomed Mater. 2017;65:872–80.PubMedCrossRef
32.
go back to reference Harris LG, Meredith DO, Eschbach L, Richards RG. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials. J Mater Sci Mater Med. 2007;18(6):1151–6.PubMedCrossRef Harris LG, Meredith DO, Eschbach L, Richards RG. Staphylococcus aureus adhesion to standard micro-rough and electropolished implant materials. J Mater Sci Mater Med. 2007;18(6):1151–6.PubMedCrossRef
33.
go back to reference Albrektsson T, Wennerberg A. Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17:536–43.PubMed Albrektsson T, Wennerberg A. Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont. 2004;17:536–43.PubMed
34.
go back to reference Daddi Oubekka S, Briandet R, Fontaine-Aupart MP, Steenkeste K. Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms. Antimicrob Agents Chemother. 2012;56(6):3349–58.PubMedPubMedCentralCrossRef Daddi Oubekka S, Briandet R, Fontaine-Aupart MP, Steenkeste K. Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms. Antimicrob Agents Chemother. 2012;56(6):3349–58.PubMedPubMedCentralCrossRef
35.
go back to reference Nishitani K, Sutipornpalangkul W, de Mesy Bentley KL, et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J Orthop Res. 2015;33(9):1311–9.PubMedPubMedCentralCrossRef Nishitani K, Sutipornpalangkul W, de Mesy Bentley KL, et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J Orthop Res. 2015;33(9):1311–9.PubMedPubMedCentralCrossRef
36.
go back to reference Brown MR, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother. 1988;22(6):777–80.PubMedCrossRef Brown MR, Allison DG, Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother. 1988;22(6):777–80.PubMedCrossRef
37.
go back to reference Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62.PubMedPubMedCentralCrossRef Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49–62.PubMedPubMedCentralCrossRef
39.
go back to reference Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996;20(5):1083–91.PubMedCrossRef Heilmann C, Schweitzer O, Gerke C, et al. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996;20(5):1083–91.PubMedCrossRef
40.
go back to reference Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015;5:7.PubMedPubMedCentralCrossRef Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015;5:7.PubMedPubMedCentralCrossRef
41.
go back to reference Le KY, Dastgheyb S, Ho TV, Otto M. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol. 2014;4:167.PubMedPubMedCentralCrossRef Le KY, Dastgheyb S, Ho TV, Otto M. Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol. 2014;4:167.PubMedPubMedCentralCrossRef
42.
go back to reference Clarissa P, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, Loftus BJ, Pier GB, Fey PD, Massey RC. Methicillin resistance alters the biofilm phenotype and attenuates virulence inStaphylococcus aureus device-associated infections. PLoS Pathog. 2012;8(4):e1002626.CrossRef Clarissa P, Waters EM, Rudkin JK, Schaeffer CR, Lohan AJ, Tong P, Loftus BJ, Pier GB, Fey PD, Massey RC. Methicillin resistance alters the biofilm phenotype and attenuates virulence inStaphylococcus aureus device-associated infections. PLoS Pathog. 2012;8(4):e1002626.CrossRef
43.
go back to reference Sánchez MC, Llama-Palacios A, Fernández E, et al. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater. 2014;30(10):1161–71.PubMedCrossRef Sánchez MC, Llama-Palacios A, Fernández E, et al. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater. 2014;30(10):1161–71.PubMedCrossRef
44.
go back to reference Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces. J Periodontol. 2017;88(3):298–307.PubMedCrossRef Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces. J Periodontol. 2017;88(3):298–307.PubMedCrossRef
45.
go back to reference Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am. 2006;88(11):2487–500.PubMedCrossRef Jiranek WA, Hanssen AD, Greenwald AS. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am. 2006;88(11):2487–500.PubMedCrossRef
46.
go back to reference Wu T, Zhang Q, Ren W, et al. Controlled release of gentamicin from gelatin/genipin reinforced beta-tricalcium phosphate scaffold for the treatment of osteomyelitis. J Mater Chem B. 2013;1(26):3304–13.CrossRef Wu T, Zhang Q, Ren W, et al. Controlled release of gentamicin from gelatin/genipin reinforced beta-tricalcium phosphate scaffold for the treatment of osteomyelitis. J Mater Chem B. 2013;1(26):3304–13.CrossRef
47.
go back to reference Walenkamp GH, Kleijn LL, de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1-12 years. Acta Orthop Scand. 1998;69(5):518–22.PubMedCrossRef Walenkamp GH, Kleijn LL, de Leeuw M. Osteomyelitis treated with gentamicin-PMMA beads: 100 patients followed for 1-12 years. Acta Orthop Scand. 1998;69(5):518–22.PubMedCrossRef
48.
go back to reference Wei Q, Haag R. Universal polymer coatings and their representative biomedical applications. Mater Horiz. 2015;2(6):567–77.CrossRef Wei Q, Haag R. Universal polymer coatings and their representative biomedical applications. Mater Horiz. 2015;2(6):567–77.CrossRef
49.
go back to reference Wei Q, Becherer T, Angioletti-Uberti S, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed Engl. 2014;53(31):8004–31.PubMedCrossRef Wei Q, Becherer T, Angioletti-Uberti S, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed Engl. 2014;53(31):8004–31.PubMedCrossRef
50.
go back to reference Boles BR, Thoendel M, Singh PK. Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A. 2004;101(47):16630–5.PubMedPubMedCentralCrossRef Boles BR, Thoendel M, Singh PK. Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A. 2004;101(47):16630–5.PubMedPubMedCentralCrossRef
51.
go back to reference Sanchez-Gomez S, Ferrer-Espada R, Stewart PS, et al. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol. 2015;15:137.PubMedPubMedCentralCrossRef Sanchez-Gomez S, Ferrer-Espada R, Stewart PS, et al. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms. BMC Microbiol. 2015;15:137.PubMedPubMedCentralCrossRef
52.
go back to reference Davies JA, Harrison JJ, Marques LL, et al. The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol Ecol. 2007;59(1):32–46.PubMedCrossRef Davies JA, Harrison JJ, Marques LL, et al. The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol Ecol. 2007;59(1):32–46.PubMedCrossRef
53.
go back to reference Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 2007;5(12):928–38.PubMedCrossRef Harrison JJ, Ceri H, Turner RJ. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 2007;5(12):928–38.PubMedCrossRef
54.
go back to reference Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014;157(3):539–48.PubMedCrossRef Maisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014;157(3):539–48.PubMedCrossRef
55.
go back to reference Benoit MA, Mousset B, Delloye C, Bouillet R, Gillard J. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections. Int Orthop. 1997;21(6):403–8.PubMedCrossRef Benoit MA, Mousset B, Delloye C, Bouillet R, Gillard J. Antibiotic-loaded plaster of Paris implants coated with poly lactide-co-glycolide as a controlled release delivery system for the treatment of bone infections. Int Orthop. 1997;21(6):403–8.PubMedCrossRef
56.
go back to reference Webb JC, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89(7):851.PubMedCrossRef Webb JC, Spencer RF. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br. 2007;89(7):851.PubMedCrossRef
57.
go back to reference Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130(3):202–15.PubMedCrossRef Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Control Release. 2008;130(3):202–15.PubMedCrossRef
59.
go back to reference Wu TY, Zhou ZB, He ZW, et al. Reinforcement of a new calcium phosphate cement with RGD-chitosan-fiber. J Biomed Mater Res A. 2014;102(1):68–75.PubMedCrossRef Wu TY, Zhou ZB, He ZW, et al. Reinforcement of a new calcium phosphate cement with RGD-chitosan-fiber. J Biomed Mater Res A. 2014;102(1):68–75.PubMedCrossRef
60.
go back to reference Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26(33):6423–9.PubMedCrossRef Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials. 2005;26(33):6423–9.PubMedCrossRef
61.
go back to reference Wu T, Hua X, He Z, et al. The bactericidal and biocompatible characteristics of reinforced calcium phosphate cements. Biomed Mater. 2012;7(4):045003.PubMedCrossRef Wu T, Hua X, He Z, et al. The bactericidal and biocompatible characteristics of reinforced calcium phosphate cements. Biomed Mater. 2012;7(4):045003.PubMedCrossRef
62.
go back to reference Chen WC, Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J Biomed Mater Res A. 2003;64(4):664–71.PubMedCrossRef Chen WC, Lin JH, Ju CP. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement. J Biomed Mater Res A. 2003;64(4):664–71.PubMedCrossRef
63.
go back to reference Moskowitz JS, Blaisse MR, Samuel RE, et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials. 2010;31(23):6019–30.PubMedPubMedCentralCrossRef Moskowitz JS, Blaisse MR, Samuel RE, et al. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials. 2010;31(23):6019–30.PubMedPubMedCentralCrossRef
64.
go back to reference Diefenbeck M, Schrader C, Gras F, et al. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials. 2016;101:156–64.PubMedCrossRef Diefenbeck M, Schrader C, Gras F, et al. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials. 2016;101:156–64.PubMedCrossRef
65.
go back to reference Moghaddam A, Graeser V, Westhauser F, et al. Patients’ safety: is there a systemic release of gentamicin by gentamicin-coated tibia nails in clinical use? Ther Clin Risk Manag. 2016;12:1387–93.PubMedPubMedCentralCrossRef Moghaddam A, Graeser V, Westhauser F, et al. Patients’ safety: is there a systemic release of gentamicin by gentamicin-coated tibia nails in clinical use? Ther Clin Risk Manag. 2016;12:1387–93.PubMedPubMedCentralCrossRef
66.
go back to reference Raschke M, Vordemvenne T, Fuchs T. Limb salvage or amputation? The use of a gentamicin coated nail in a severe, grade IIIc tibia fracture. Eur J Trauma Emerg Surg. 2010;36(6):605–8.PubMedCrossRef Raschke M, Vordemvenne T, Fuchs T. Limb salvage or amputation? The use of a gentamicin coated nail in a severe, grade IIIc tibia fracture. Eur J Trauma Emerg Surg. 2010;36(6):605–8.PubMedCrossRef
67.
go back to reference Kankilic B, Bayramli E, Kilic E, Dağdeviren S, Korkusuz F. Vancomycin containing PLLA/β-TCP controls MRSA in vitro. Clin Orthop Relat R. 2011;469(11):3222–8.CrossRef Kankilic B, Bayramli E, Kilic E, Dağdeviren S, Korkusuz F. Vancomycin containing PLLA/β-TCP controls MRSA in vitro. Clin Orthop Relat R. 2011;469(11):3222–8.CrossRef
68.
go back to reference Kankilic B, Bilgic E, Korkusuz P, Korkusuz F. Vancomycin containing PLLA/beta-TCP controls experimental osteomyelitis in vivo. J Orthop Surg Res. 2014;9:114.PubMedPubMedCentralCrossRef Kankilic B, Bilgic E, Korkusuz P, Korkusuz F. Vancomycin containing PLLA/beta-TCP controls experimental osteomyelitis in vivo. J Orthop Surg Res. 2014;9:114.PubMedPubMedCentralCrossRef
69.
go back to reference Baskar K, Anusuya T, Devanand Venkatasubbu G. Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens. Mater Sci Eng C Mater Biol Appl. 2017;73:8–14.PubMedCrossRef Baskar K, Anusuya T, Devanand Venkatasubbu G. Mechanistic investigation on microbial toxicity of nano hydroxyapatite on implant associated pathogens. Mater Sci Eng C Mater Biol Appl. 2017;73:8–14.PubMedCrossRef
70.
go back to reference Uskokovic V, Desai TA. In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J Pharm Sci. 2014;103(2):567–79.PubMedCrossRef Uskokovic V, Desai TA. In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J Pharm Sci. 2014;103(2):567–79.PubMedCrossRef
71.
go back to reference Xie XH, Yu XW, Zeng SX, et al. Enhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite. J Mater Sci Mater Med. 2010;21(7):2165–73.PubMedCrossRef Xie XH, Yu XW, Zeng SX, et al. Enhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite. J Mater Sci Mater Med. 2010;21(7):2165–73.PubMedCrossRef
72.
go back to reference Xiu P, Jia Z, Lv J, et al. Hierarchical micropore/nanorod apatite hybrids in-situ grown from 3-D printed macroporous Ti6Al4V implants with improved bioactivity and osseointegration. J Mater Sci Technol. 2017;2:179–86.CrossRef Xiu P, Jia Z, Lv J, et al. Hierarchical micropore/nanorod apatite hybrids in-situ grown from 3-D printed macroporous Ti6Al4V implants with improved bioactivity and osseointegration. J Mater Sci Technol. 2017;2:179–86.CrossRef
73.
go back to reference Shah FA, Trobos M, Thomsen P, Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—is one truly better than the other? Mater Sci Eng C Mater Biol Appl. 2016;62:960–6.PubMedCrossRef Shah FA, Trobos M, Thomsen P, Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—is one truly better than the other? Mater Sci Eng C Mater Biol Appl. 2016;62:960–6.PubMedCrossRef
74.
go back to reference Yang CC, Lin CC, Liao JW, Yen SK. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C Mater Biol Appl. 2013;33(4):2203–12.PubMedCrossRef Yang CC, Lin CC, Liao JW, Yen SK. Vancomycin–chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Mater Sci Eng C Mater Biol Appl. 2013;33(4):2203–12.PubMedCrossRef
75.
go back to reference Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8(3):963–77.PubMedCrossRef Dorozhkin SV. Biphasic, triphasic and multiphasic calcium orthophosphates. Acta Biomater. 2012;8(3):963–77.PubMedCrossRef
76.
go back to reference Polak SJ, Levengood SK, Wheeler MB, et al. Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds. Acta Biomater. 2011;7(4):1760–71.PubMedCrossRef Polak SJ, Levengood SK, Wheeler MB, et al. Analysis of the roles of microporosity and BMP-2 on multiple measures of bone regeneration and healing in calcium phosphate scaffolds. Acta Biomater. 2011;7(4):1760–71.PubMedCrossRef
77.
go back to reference Li X, Wei J, Aifantis KE, et al. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A. 2016;104(5):1285–96.PubMedCrossRef Li X, Wei J, Aifantis KE, et al. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A. 2016;104(5):1285–96.PubMedCrossRef
78.
go back to reference Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vivo study of nanostructured akermanite/PEO coating on biodegradable magnesium alloy for biomedical applications. J Biomed Mater Res A. 2015;103(5):1798–808.PubMedCrossRef Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vivo study of nanostructured akermanite/PEO coating on biodegradable magnesium alloy for biomedical applications. J Biomed Mater Res A. 2015;103(5):1798–808.PubMedCrossRef
79.
go back to reference Oh S, Moon KS, Lee SH. Effect of RGD peptide-coated TiO2 nanotubes on the attachment, proliferation, and functionality of bone-related cells. J Nanomater. 2013;2013(13):125–8. Oh S, Moon KS, Lee SH. Effect of RGD peptide-coated TiO2 nanotubes on the attachment, proliferation, and functionality of bone-related cells. J Nanomater. 2013;2013(13):125–8.
80.
go back to reference Marchesan S, Qu Y, Waddington LJ, et al. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials. 2013;34(14):3678–87.PubMedCrossRef Marchesan S, Qu Y, Waddington LJ, et al. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials. 2013;34(14):3678–87.PubMedCrossRef
81.
go back to reference Chang CH, Lin YH, Yeh CL, et al. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of helicobacter pylori. Biomacromolecules. 2010;11(1):133.PubMedCrossRef Chang CH, Lin YH, Yeh CL, et al. Nanoparticles incorporated in pH-sensitive hydrogels as amoxicillin delivery for eradication of helicobacter pylori. Biomacromolecules. 2010;11(1):133.PubMedCrossRef
82.
go back to reference Li H, Yang J, Hu X, et al. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mater Res A. 2011;98(1):31.PubMedCrossRef Li H, Yang J, Hu X, et al. Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mater Res A. 2011;98(1):31.PubMedCrossRef
83.
go back to reference Rabea EI, Badawy ET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2015;4(6):1457.CrossRef Rabea EI, Badawy ET, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2015;4(6):1457.CrossRef
84.
go back to reference Xiao B, Wan Y, Zhao M, Liu Y, Zhang S. Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr Polym. 2011;83(1):144–50.CrossRef Xiao B, Wan Y, Zhao M, Liu Y, Zhang S. Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr Polym. 2011;83(1):144–50.CrossRef
85.
go back to reference Hashemi DA, Mirzadeh H, Imani M, Samadi N. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym. 2013;92(1):48–56.CrossRef Hashemi DA, Mirzadeh H, Imani M, Samadi N. Chitosan/polyethylene glycol fumarate blend film: physical and antibacterial properties. Carbohydr Polym. 2013;92(1):48–56.CrossRef
86.
go back to reference Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infe. 2011;9(7):857.CrossRef Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti-Infe. 2011;9(7):857.CrossRef
87.
go back to reference Yan L, Kazuki F, Coady DJ, et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem. 2013;52(2):674.CrossRef Yan L, Kazuki F, Coady DJ, et al. Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem. 2013;52(2):674.CrossRef
88.
go back to reference Guillaume O, Garric X, Lavigne JP, Van DBH, Coudane J. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release. 2012;162(3):492–501.PubMedCrossRef Guillaume O, Garric X, Lavigne JP, Van DBH, Coudane J. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release. 2012;162(3):492–501.PubMedCrossRef
89.
go back to reference Tang Y, Zhao Y, Wang H, et al. Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment. J Biomed Mater Res A. 2012;100A(8):2071–8.CrossRef Tang Y, Zhao Y, Wang H, et al. Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment. J Biomed Mater Res A. 2012;100A(8):2071–8.CrossRef
90.
go back to reference Qu H, Knabe C, Burke M, et al. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection. Mil Med. 2014;179(8 Suppl):29–33.PubMedCrossRef Qu H, Knabe C, Burke M, et al. Bactericidal micron-thin sol-gel films prevent pin tract and periprosthetic infection. Mil Med. 2014;179(8 Suppl):29–33.PubMedCrossRef
91.
go back to reference Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371–84.PubMedCrossRef Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371–84.PubMedCrossRef
92.
go back to reference Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2015;52(4):662–8.CrossRef Feng QL, Wu J, Chen GQ, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res. 2015;52(4):662–8.CrossRef
93.
go back to reference Chen W, Oh S, Ong AP, et al. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res A. 2010;82A(4):899–906.CrossRef Chen W, Oh S, Ong AP, et al. Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res A. 2010;82A(4):899–906.CrossRef
94.
go back to reference Zheng Z, Yin W, Zara JN, et al. The use of BMP-2 coupled - nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials. 2010;31(35):9293–300.PubMedPubMedCentralCrossRef Zheng Z, Yin W, Zara JN, et al. The use of BMP-2 coupled - nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials. 2010;31(35):9293–300.PubMedPubMedCentralCrossRef
95.
go back to reference Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52(6):1636–53.PubMedCrossRef Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52(6):1636–53.PubMedCrossRef
96.
go back to reference Mijnendonckx K, Leys N, Mahillon J, Silver S, Houdt RV. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013;26(4):609.PubMedCrossRef Mijnendonckx K, Leys N, Mahillon J, Silver S, Houdt RV. Antimicrobial silver: uses, toxicity and potential for resistance. Biometals. 2013;26(4):609.PubMedCrossRef
97.
go back to reference Harrasser N, Gorkotte J, Obermeier A, et al. A new model of implant-related osteomyelitis in the metaphysis of rat tibiae. BMC Musculoskel Dis. 2016;17(1):1–11.CrossRef Harrasser N, Gorkotte J, Obermeier A, et al. A new model of implant-related osteomyelitis in the metaphysis of rat tibiae. BMC Musculoskel Dis. 2016;17(1):1–11.CrossRef
98.
go back to reference Agarwal A, Weis TL, Schurr MJ, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31(4):680–90.PubMedCrossRef Agarwal A, Weis TL, Schurr MJ, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31(4):680–90.PubMedCrossRef
99.
go back to reference Bai X, Sandukas S, Appleford M, Ong JL, Rabiei A. Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res B Appl Biomater. 2012;100(2):553–61.PubMedCrossRef Bai X, Sandukas S, Appleford M, Ong JL, Rabiei A. Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res B Appl Biomater. 2012;100(2):553–61.PubMedCrossRef
100.
go back to reference Singh A, Dar MY, Joshi B, et al. Phytofabrication of silver nanoparticles: novel drug to overcome hepatocellular ailments. Toxicol Rep. 2018;5:333–42.PubMedPubMedCentralCrossRef Singh A, Dar MY, Joshi B, et al. Phytofabrication of silver nanoparticles: novel drug to overcome hepatocellular ailments. Toxicol Rep. 2018;5:333–42.PubMedPubMedCentralCrossRef
101.
102.
go back to reference Tran N, Tran PA, Jarrell JD, et al. In vivo caprine model for osteomyelitis and evaluation of biofilm-resistant intramedullary nails. Biomed Res Int. 2013;2013:674378.PubMedPubMedCentralCrossRef Tran N, Tran PA, Jarrell JD, et al. In vivo caprine model for osteomyelitis and evaluation of biofilm-resistant intramedullary nails. Biomed Res Int. 2013;2013:674378.PubMedPubMedCentralCrossRef
104.
go back to reference Nandi SK, Shivaram A, Bose S, Bandyopadhyay A. Silver nanoparticle deposited implants to treat osteomyelitis. J Biomed Mater Res B Appl Biomater. 2018;106(3):1073–83.PubMedCrossRef Nandi SK, Shivaram A, Bose S, Bandyopadhyay A. Silver nanoparticle deposited implants to treat osteomyelitis. J Biomed Mater Res B Appl Biomater. 2018;106(3):1073–83.PubMedCrossRef
105.
go back to reference Kundu B, Nandi SK, Roy S, et al. Systematic approach to treat chronic osteomyelitis through ceftriaxone–sulbactam impregnated porous β-tri calcium phosphate localized delivery system. Ceram Int. 2012;38:1533–48.CrossRef Kundu B, Nandi SK, Roy S, et al. Systematic approach to treat chronic osteomyelitis through ceftriaxone–sulbactam impregnated porous β-tri calcium phosphate localized delivery system. Ceram Int. 2012;38:1533–48.CrossRef
106.
go back to reference Zhao J, Feng HJ, Tang HQ, Zheng JH. Bactericidal and corrosive properties of silver implanted TiN thin films coated on AISI317 stainless steel. Surf Coat Tech. 2007;201(9):5676–9.CrossRef Zhao J, Feng HJ, Tang HQ, Zheng JH. Bactericidal and corrosive properties of silver implanted TiN thin films coated on AISI317 stainless steel. Surf Coat Tech. 2007;201(9):5676–9.CrossRef
107.
go back to reference Funao H, Nagai S, Sasaki A, et al. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection. Sci Rep. 2016;6:23238.PubMedPubMedCentralCrossRef Funao H, Nagai S, Sasaki A, et al. A novel hydroxyapatite film coated with ionic silver via inositol hexaphosphate chelation prevents implant-associated infection. Sci Rep. 2016;6:23238.PubMedPubMedCentralCrossRef
108.
go back to reference Coester LM, Nepola JV, Allen J, Marsh JL. The effects of silver coated external fixation pins. Iowa Orthop J. 2006;26:48–53.PubMedPubMedCentral Coester LM, Nepola JV, Allen J, Marsh JL. The effects of silver coated external fixation pins. Iowa Orthop J. 2006;26:48–53.PubMedPubMedCentral
109.
go back to reference Shirai T, Tsuchiya H, Nishida H, et al. Antimicrobial megaprostheses supported with iodine. J Biomater Appl. 2014;29(4):617–23.PubMedCrossRef Shirai T, Tsuchiya H, Nishida H, et al. Antimicrobial megaprostheses supported with iodine. J Biomater Appl. 2014;29(4):617–23.PubMedCrossRef
110.
111.
go back to reference Zhou Z, Xu Z, Wang F, et al. New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget. 2016;7(44):71998–2010.PubMedPubMedCentral Zhou Z, Xu Z, Wang F, et al. New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget. 2016;7(44):71998–2010.PubMedPubMedCentral
112.
go back to reference Back DA, Bormann N, Calafi A, et al. Testing of antibiotic releasing implant coatings to fight bacteria in combat-associated osteomyelitis - an in-vitro study. Int Orthop. 2016;40(5):1039–47.PubMedCrossRef Back DA, Bormann N, Calafi A, et al. Testing of antibiotic releasing implant coatings to fight bacteria in combat-associated osteomyelitis - an in-vitro study. Int Orthop. 2016;40(5):1039–47.PubMedCrossRef
113.
go back to reference Bastari K, Arshath M, Ng ZH, et al. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J Mater Sci Mater Med. 2014;25(3):747–57.PubMedCrossRef Bastari K, Arshath M, Ng ZH, et al. A controlled release of antibiotics from calcium phosphate-coated poly(lactic-co-glycolic acid) particles and their in vitro efficacy against Staphylococcus aureus biofilm. J Mater Sci Mater Med. 2014;25(3):747–57.PubMedCrossRef
114.
go back to reference Vester H, Wildemann B, Schmidmaier G, Stockle U, Lucke M. Gentamycin delivered from a PDLLA coating of metallic implants: in vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis. Injury. 2010;41(10):1053–9.PubMedCrossRef Vester H, Wildemann B, Schmidmaier G, Stockle U, Lucke M. Gentamycin delivered from a PDLLA coating of metallic implants: in vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis. Injury. 2010;41(10):1053–9.PubMedCrossRef
115.
116.
go back to reference Jr VA, Adams CS, Parvizi J, et al. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials. 2008;29(35):4684–90.CrossRef Jr VA, Adams CS, Parvizi J, et al. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials. 2008;29(35):4684–90.CrossRef
117.
go back to reference Héquet A, Humblot V, Berjeaud JM, Pradier CM. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloid Surfaces B. 2011;84(2):301–9.CrossRef Héquet A, Humblot V, Berjeaud JM, Pradier CM. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloid Surfaces B. 2011;84(2):301–9.CrossRef
118.
go back to reference Min J, Choi KY, Dreaden EC, et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano. 2016;10(4):4441–50. Min J, Choi KY, Dreaden EC, et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair. ACS Nano. 2016;10(4):4441–50.
119.
go back to reference Windolf CD, Logters T, Scholz M, Windolf J, Flohe S. Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model. PLoS One. 2014;9(12):e115940. Windolf CD, Logters T, Scholz M, Windolf J, Flohe S. Lysostaphin-coated titan-implants preventing localized osteitis by Staphylococcus aureus in a mouse model. PLoS One. 2014;9(12):e115940.
120.
go back to reference Folsch C, Federmann M, Kuehn KD, et al. Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model. Int Orthop. 2015;39(5):981–8. Folsch C, Federmann M, Kuehn KD, et al. Coating with a novel gentamicinpalmitate formulation prevents implant-associated osteomyelitis induced by methicillin-susceptible Staphylococcus aureus in a rat model. Int Orthop. 2015;39(5):981–8.
121.
go back to reference Monzón M, García-Alvarez F, Laclériga A, et al. A simple infection model using pre-colonized implants to reproduce rat chronic Staphylococcus aureus osteomyelitis and study antibiotic treatment. J Orthop Res. 2001;19(5):820–6. Monzón M, García-Alvarez F, Laclériga A, et al. A simple infection model using pre-colonized implants to reproduce rat chronic Staphylococcus aureus osteomyelitis and study antibiotic treatment. J Orthop Res. 2001;19(5):820–6.
122.
go back to reference Power ME, Olson ME, Domingue PA, Costerton JW. A rat model of Staphylococcus aureus chronic osteomyelitis that provides a suitable system for studying the human infection. J Med Microbiol. 1990;33(3):189–98. Power ME, Olson ME, Domingue PA, Costerton JW. A rat model of Staphylococcus aureus chronic osteomyelitis that provides a suitable system for studying the human infection. J Med Microbiol. 1990;33(3):189–98.
123.
go back to reference Gracia E, Laclériga A, Monzón M, et al. Application of a rat osteomyelitis model to compare in vivo and in vitro the antibiotic efficacy against bacteria with high capacity to form biofilms. J Surg Res. 1998;79(2):146–53. Gracia E, Laclériga A, Monzón M, et al. Application of a rat osteomyelitis model to compare in vivo and in vitro the antibiotic efficacy against bacteria with high capacity to form biofilms. J Surg Res. 1998;79(2):146–53.
124.
go back to reference Lucke M, Schmidmaier G, Sadoni S, et al. A new model of implant-related osteomyelitis in rats. J Biomed Mater Res B Appl Biomater. 2003;67(1):593–602. Lucke M, Schmidmaier G, Sadoni S, et al. A new model of implant-related osteomyelitis in rats. J Biomed Mater Res B Appl Biomater. 2003;67(1):593–602.
125.
go back to reference Ren W, Muzik O, Jackson N, et al. Differentiation of septic and aseptic loosening by PET with both 11C-PK11195 and 18F-FDG in rat models. Nucl Med Commun. 2012;33(7):747–56. Ren W, Muzik O, Jackson N, et al. Differentiation of septic and aseptic loosening by PET with both 11C-PK11195 and 18F-FDG in rat models. Nucl Med Commun. 2012;33(7):747–56.
126.
go back to reference Metsemakers WJ, Emanuel N, Cohen O, et al. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus. J Control Release. 2015;209:47–56.PubMedCrossRef Metsemakers WJ, Emanuel N, Cohen O, et al. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus. J Control Release. 2015;209:47–56.PubMedCrossRef
127.
go back to reference Beenken KE, Smith JK, Skinner RA, et al. Chitosan coating to enhance the therapeutic efficacy of calcium sulfate-based antibiotic therapy in the treatment of chronic osteomyelitis. J Biomater Appl. 2014;29(4):514–23.PubMedPubMedCentralCrossRef Beenken KE, Smith JK, Skinner RA, et al. Chitosan coating to enhance the therapeutic efficacy of calcium sulfate-based antibiotic therapy in the treatment of chronic osteomyelitis. J Biomater Appl. 2014;29(4):514–23.PubMedPubMedCentralCrossRef
128.
go back to reference Jennings JA, Beenken KE, Skinner RA, et al. Antibiotic-loaded phosphatidylcholine inhibits staphylococcal bone infection. World J Orthop. 2016;7(8):467–74.PubMedPubMedCentralCrossRef Jennings JA, Beenken KE, Skinner RA, et al. Antibiotic-loaded phosphatidylcholine inhibits staphylococcal bone infection. World J Orthop. 2016;7(8):467–74.PubMedPubMedCentralCrossRef
129.
go back to reference Salgado CJ, Jamali AA, Mardini S, Buchanan K, Veit B. A model for chronic osteomyelitis using Staphylococcus aureus in goats. Clin Orthop Relat Res. 2005;436:246–50.CrossRef Salgado CJ, Jamali AA, Mardini S, Buchanan K, Veit B. A model for chronic osteomyelitis using Staphylococcus aureus in goats. Clin Orthop Relat Res. 2005;436:246–50.CrossRef
130.
go back to reference Metsemakers WJ, Reul M, Nijs S. The use of gentamicin-coated nails in complex open tibia fracture and revision cases: a retrospective analysis of a single Centre case series and review of the literature. Injury. 2015;46(12):2433–7.PubMedCrossRef Metsemakers WJ, Reul M, Nijs S. The use of gentamicin-coated nails in complex open tibia fracture and revision cases: a retrospective analysis of a single Centre case series and review of the literature. Injury. 2015;46(12):2433–7.PubMedCrossRef
131.
go back to reference Conway J, Mansour J, Kotze K, Specht S, Shabtai L. Antibiotic cement-coated rods: an effective treatment for infected long bones and prosthetic joint nonunions. Bone Joint J. 2014;96-b(10):1349–54.PubMedCrossRef Conway J, Mansour J, Kotze K, Specht S, Shabtai L. Antibiotic cement-coated rods: an effective treatment for infected long bones and prosthetic joint nonunions. Bone Joint J. 2014;96-b(10):1349–54.PubMedCrossRef
132.
go back to reference Thonse R, Conway J. Antibiotic cement-coated interlocking nail for the treatment of infected nonunions and segmental bone defects. J Orthop Traum. 2007;21(4):258–68.CrossRef Thonse R, Conway J. Antibiotic cement-coated interlocking nail for the treatment of infected nonunions and segmental bone defects. J Orthop Traum. 2007;21(4):258–68.CrossRef
133.
go back to reference Fuchs T, Stange R, Schmidmaier G, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25.PubMedPubMedCentralCrossRef Fuchs T, Stange R, Schmidmaier G, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131(10):1419–25.PubMedPubMedCentralCrossRef
134.
go back to reference Hardes J, von Eiff C, Streitbuerger A, et al. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101(5):389–95.PubMed Hardes J, von Eiff C, Streitbuerger A, et al. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol. 2010;101(5):389–95.PubMed
135.
go back to reference Wilding CP, Cooper GA, Freeman AK, Parry MC, Jeys L. Can a silver-coated arthrodesis implant provide a viable alternative to above knee amputation in the unsalvageable, infected total knee arthroplasty? J Arthroplast. 2016;31(11):2542–7.CrossRef Wilding CP, Cooper GA, Freeman AK, Parry MC, Jeys L. Can a silver-coated arthrodesis implant provide a viable alternative to above knee amputation in the unsalvageable, infected total knee arthroplasty? J Arthroplast. 2016;31(11):2542–7.CrossRef
136.
go back to reference Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, Tillman RM. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J. 2015;97-B(2):252–7.PubMedCrossRef Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR, Tillman RM. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J. 2015;97-B(2):252–7.PubMedCrossRef
137.
go back to reference Glehr M, Leithner A, Friesenbichler J, et al. Argyria following the use of silver-coated megaprostheses: no association between the development of local argyria and elevated silver levels. Bone Joint J. 2013;95-B(7):988–92.PubMedCrossRef Glehr M, Leithner A, Friesenbichler J, et al. Argyria following the use of silver-coated megaprostheses: no association between the development of local argyria and elevated silver levels. Bone Joint J. 2013;95-B(7):988–92.PubMedCrossRef
138.
go back to reference Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008;466(7):1710–5.PubMedPubMedCentralCrossRef Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J, et al. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res. 2008;466(7):1710–5.PubMedPubMedCentralCrossRef
140.
go back to reference Sendi P, Banderet F, Graber P, Zimmerli W. Clinical comparison between exogenous and haematogenous periprosthetic joint infections caused by Staphylococcus aureus. Clin Microbiol Infect. 2011;17(7):1098–100.PubMedCrossRef Sendi P, Banderet F, Graber P, Zimmerli W. Clinical comparison between exogenous and haematogenous periprosthetic joint infections caused by Staphylococcus aureus. Clin Microbiol Infect. 2011;17(7):1098–100.PubMedCrossRef
141.
go back to reference Senneville E, Joulie D, Legout L, et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis. 2011;53(4):334–40.PubMedPubMedCentralCrossRef Senneville E, Joulie D, Legout L, et al. Outcome and predictors of treatment failure in total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis. 2011;53(4):334–40.PubMedPubMedCentralCrossRef
142.
go back to reference Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013;56(2):182–94.PubMedCrossRef Lora-Tamayo J, Murillo O, Iribarren JA, et al. A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis. 2013;56(2):182–94.PubMedCrossRef
Metadata
Title
Coatings as the useful drug delivery system for the prevention of implant-related infections
Authors
Chenhao Pan
Zubin Zhou
Xiaowei Yu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2018
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-018-0930-y

Other articles of this Issue 1/2018

Journal of Orthopaedic Surgery and Research 1/2018 Go to the issue