Skip to main content
Top
Published in: Journal of Translational Medicine 1/2012

Open Access 01-12-2012 | Research

Clinical use of Dieletrophoresis separation for live Adipose derived stem cells

Authors: Allan Y Wu, David M Morrow

Published in: Journal of Translational Medicine | Issue 1/2012

Login to get access

Abstract

Background

Microelectrode dieletrophoresis capture of live cells has been explored in animal and cellular models ex-vivo. Currently, there is no clinical data available regarding the safety and efficacy of dielectrophoresis (DEP) buffers and microcurrent manipulation in humans, despite copious pre-clinical studies suggesting its safety. The purpose of this study was to determine if DEP isolation of SVF using minimal manipulation methods is safe and efficacious for use in humans using the hand lipotransfer model.

Methods

Autologous stromal vascular fraction cells (SVF) were obtained from lipoaspirate by collagenase digestion and centrifugation. The final mixture of live and dead cells was further processed using a custom DEP microelectrode array and microcurrent generator to isolate only live nucleated cells. Lipotransfer was completed using fat graft enhanced with either standard processed SVF (control) versus DEP filtered SVF (experimental). Spectral photography, ultrasound and biometric measurements were obtained at post operatively days 1, 4, 7, 14, 30, 60 and 90.

Results

The DEP filter was capable of increasing SVF viability counts from 74.3 ± 2.0% to 94.7 ± 2.1%. Surrogate markers of inflammation (temperature, soft tissue swelling, pain and diminished range of motion) were more profound on the control hand. Clinical improvement in hand appearance was appreciated in both hands, though the control hand exclusively sustained late phase erosive skin breaks on post operative day 7. No skin breaks were appreciated on the DEP-SVF treated hand. Early fat engraftment failure was noted on the control hand thenar web space at 3 months post surgery.

Discussion

No immediate hypersensitivity or adverse reaction was appreciated with the DEP-SVF treated hand. In fact, the control hand experienced skin disruption and mild superficial cellulitis, whereas the experimental hand did not experience this complication, suggesting a possible “protective” effect with DEP filtered SVF. Late ultrasound survey revealed larger and more frequent formation of oil cysts in the control hand, also suggesting greater risk of engraftment failure with standard lipotransfer.

Conclusion

Clinical DEP appears safe and efficacious for human use. The DEP microelectrode array was found to be versatile and robust in efficiently isolating live SVF cells from dead cells and cellular debris in a time sensitive clinical setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Casteilla L, Planat-Benard V, Laharrague P, Cousin B: Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells. 2011, 3: 25-33. 10.4252/wjsc.v3.i4.25.CrossRefPubMedPubMedCentral Casteilla L, Planat-Benard V, Laharrague P, Cousin B: Adipose-derived stromal cells: their identity and uses in clinical trials, an update. World J Stem Cells. 2011, 3: 25-33. 10.4252/wjsc.v3.i4.25.CrossRefPubMedPubMedCentral
2.
go back to reference Yoshimura K, Shigeura T, Matsumoto D: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006, 208: 64-76. 10.1002/jcp.20636.CrossRefPubMed Yoshimura K, Shigeura T, Matsumoto D: Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol. 2006, 208: 64-76. 10.1002/jcp.20636.CrossRefPubMed
4.
go back to reference Hicok KC, Hedrick MH: Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol. 2011, 702: 87-105. 10.1007/978-1-61737-960-4_8.CrossRefPubMed Hicok KC, Hedrick MH: Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol Biol. 2011, 702: 87-105. 10.1007/978-1-61737-960-4_8.CrossRefPubMed
5.
go back to reference The history, rationale and efficacy of autologous collagen implants used for enhancement and rejuvenation of the face and hands. Edited by: Morrow DM. 1991, Arnette, Paris The history, rationale and efficacy of autologous collagen implants used for enhancement and rejuvenation of the face and hands. Edited by: Morrow DM. 1991, Arnette, Paris
6.
go back to reference Ye J, Gimble JM: Regulation of stem cell differentiation in adipose tissue by chronic inflammation. Clin Exp Pharmacol Physiol. 2011, 38: 872-878. 10.1111/j.1440-1681.2011.05596.x.CrossRefPubMedPubMedCentral Ye J, Gimble JM: Regulation of stem cell differentiation in adipose tissue by chronic inflammation. Clin Exp Pharmacol Physiol. 2011, 38: 872-878. 10.1111/j.1440-1681.2011.05596.x.CrossRefPubMedPubMedCentral
7.
go back to reference Halme DG, Kessler DA: FDA regulation of stem-cell-based therapies. N Engl J Med. 2006, 355: 1730-1735. 10.1056/NEJMhpr063086.CrossRefPubMed Halme DG, Kessler DA: FDA regulation of stem-cell-based therapies. N Engl J Med. 2006, 355: 1730-1735. 10.1056/NEJMhpr063086.CrossRefPubMed
8.
go back to reference Harding A: Life science techologies: Sorting cells for medicine. Sciencemag. 2011, 332: 736-738. 10.1126/science.332.6030.736.CrossRef Harding A: Life science techologies: Sorting cells for medicine. Sciencemag. 2011, 332: 736-738. 10.1126/science.332.6030.736.CrossRef
9.
go back to reference Rui H, Lebrun JJ, Kirken RA, Kelly PA, Farrar WL: JAK2 activation and cell proliferation induced by antibody-mediated prolactin receptor dimerization. Endocrinology. 1994, 135: 1299-1306. 10.1210/en.135.4.1299.PubMed Rui H, Lebrun JJ, Kirken RA, Kelly PA, Farrar WL: JAK2 activation and cell proliferation induced by antibody-mediated prolactin receptor dimerization. Endocrinology. 1994, 135: 1299-1306. 10.1210/en.135.4.1299.PubMed
10.
go back to reference Jen CP: CT. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdevices. 2009, 11: 597-607. 10.1007/s10544-008-9269-1.CrossRefPubMed Jen CP: CT. Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdevices. 2009, 11: 597-607. 10.1007/s10544-008-9269-1.CrossRefPubMed
11.
go back to reference Jones TB: Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag. 2003, 22: 33-42.CrossRefPubMed Jones TB: Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag. 2003, 22: 33-42.CrossRefPubMed
12.
go back to reference Gorenflo VM, Ritter JB, Aeschliman DS, Drouin H, Bowen BD, Piret JM: Characterization and optimization of acoustic filter performance by experimental design methodology. Biotechnol Bioeng. 2005, 90: 746-753. 10.1002/bit.20476.CrossRefPubMed Gorenflo VM, Ritter JB, Aeschliman DS, Drouin H, Bowen BD, Piret JM: Characterization and optimization of acoustic filter performance by experimental design methodology. Biotechnol Bioeng. 2005, 90: 746-753. 10.1002/bit.20476.CrossRefPubMed
13.
go back to reference Tsoneva IC, Zhelev DV, Dimitrov DS: Red blood cell dielectrophoresis in axisymmetric fields. Cell Biophys. 1986, 8: 89-101. 10.1007/BF02788474.CrossRefPubMed Tsoneva IC, Zhelev DV, Dimitrov DS: Red blood cell dielectrophoresis in axisymmetric fields. Cell Biophys. 1986, 8: 89-101. 10.1007/BF02788474.CrossRefPubMed
14.
go back to reference Talary MS, Mills KI, Hoy T, Burnett AK, Pethig R: Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med Biol Eng Comput. 1995, 33: 235-237. 10.1007/BF02523050.CrossRefPubMed Talary MS, Mills KI, Hoy T, Burnett AK, Pethig R: Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med Biol Eng Comput. 1995, 33: 235-237. 10.1007/BF02523050.CrossRefPubMed
15.
go back to reference Fuhr G, Muller T, Baukloh V, Lucas K: High-frequency electric field trapping of individual human spermatozoa. Hum Reprod. 1998, 13: 136-141. 10.1093/humrep/13.1.136.CrossRefPubMed Fuhr G, Muller T, Baukloh V, Lucas K: High-frequency electric field trapping of individual human spermatozoa. Hum Reprod. 1998, 13: 136-141. 10.1093/humrep/13.1.136.CrossRefPubMed
16.
go back to reference Dessie SW, Rings F, Holker M: Dielectrophoretic behavior of in vitro-derived bovine metaphase II oocytes and zygotes and its relation to in vitro embryonic developmental competence and mRNA expression pattern. Reproduction. 2007, 133: 931-946. 10.1530/REP-06-0277.CrossRefPubMed Dessie SW, Rings F, Holker M: Dielectrophoretic behavior of in vitro-derived bovine metaphase II oocytes and zygotes and its relation to in vitro embryonic developmental competence and mRNA expression pattern. Reproduction. 2007, 133: 931-946. 10.1530/REP-06-0277.CrossRefPubMed
17.
go back to reference Flanagan LA, Lu J, Wang L: Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells. 2008, 26: 656-665. 10.1634/stemcells.2007-0810.CrossRefPubMed Flanagan LA, Lu J, Wang L: Unique dielectric properties distinguish stem cells and their differentiated progeny. Stem Cells. 2008, 26: 656-665. 10.1634/stemcells.2007-0810.CrossRefPubMed
18.
go back to reference Stephens M, Talary MS, Pethig R, Burnett AK, Mills KI: The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests. Bone Marrow Transplant. 1996, 18: 777-782.PubMed Stephens M, Talary MS, Pethig R, Burnett AK, Mills KI: The dielectrophoresis enrichment of CD34+ cells from peripheral blood stem cell harvests. Bone Marrow Transplant. 1996, 18: 777-782.PubMed
19.
go back to reference Hughes MP: Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis. 2002, 23: 2569-2582. 10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO;2-M.CrossRefPubMed Hughes MP: Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis. 2002, 23: 2569-2582. 10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO;2-M.CrossRefPubMed
20.
go back to reference Emerit I, Khan SH, Cerutti PA: Treatment of lymphocyte cultures with a hypoxanthine-xanthine oxidase system induces the formation of transferable clastogenic material. J Free Radic Biol Med. 1985, 1: 51-57. 10.1016/0748-5514(85)90029-7.CrossRefPubMed Emerit I, Khan SH, Cerutti PA: Treatment of lymphocyte cultures with a hypoxanthine-xanthine oxidase system induces the formation of transferable clastogenic material. J Free Radic Biol Med. 1985, 1: 51-57. 10.1016/0748-5514(85)90029-7.CrossRefPubMed
21.
go back to reference Boquest AC, Shahdadfar A, Fronsdal K: Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell. 2005, 16: 1131-1141. 10.1091/mbc.E04-10-0949.CrossRefPubMedPubMedCentral Boquest AC, Shahdadfar A, Fronsdal K: Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell. 2005, 16: 1131-1141. 10.1091/mbc.E04-10-0949.CrossRefPubMedPubMedCentral
22.
go back to reference Yoshimura K, Aoi N, Suga H: Ectopic fibrogenesis induced by transplantation of adipose-derived progenitor cell suspension immediately after lipoinjection. Transplantation. 2008, 85: 1868-1869. 10.1097/TP.0b013e3181775136.CrossRefPubMed Yoshimura K, Aoi N, Suga H: Ectopic fibrogenesis induced by transplantation of adipose-derived progenitor cell suspension immediately after lipoinjection. Transplantation. 2008, 85: 1868-1869. 10.1097/TP.0b013e3181775136.CrossRefPubMed
23.
go back to reference Yoshimura K, Asano Y, Aoi N: Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J. 2010, 16: 169-175. 10.1111/j.1524-4741.2009.00873.x.CrossRefPubMed Yoshimura K, Asano Y, Aoi N: Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J. 2010, 16: 169-175. 10.1111/j.1524-4741.2009.00873.x.CrossRefPubMed
24.
go back to reference Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K: Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008, 32: 48-55. 10.1007/s00266-007-9019-4. discussion 6–7CrossRefPubMedPubMedCentral Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K: Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg. 2008, 32: 48-55. 10.1007/s00266-007-9019-4. discussion 6–7CrossRefPubMedPubMedCentral
25.
go back to reference Yoshimura K, Wakita S, Sato K: Simultaneous reconstruction of breast and well-projected nipple after expansion of mammary skin. Scand J Plast Reconstr Surg Hand Surg. 2005, 39: 77-84. 10.1080/02844310410004900.CrossRefPubMed Yoshimura K, Wakita S, Sato K: Simultaneous reconstruction of breast and well-projected nipple after expansion of mammary skin. Scand J Plast Reconstr Surg Hand Surg. 2005, 39: 77-84. 10.1080/02844310410004900.CrossRefPubMed
26.
go back to reference Mizuno H, Hyakusoku H: Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet Surg J. 2010, 30: 381-387. 10.1177/1090820X10373063.CrossRefPubMed Mizuno H, Hyakusoku H: Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy. Aesthet Surg J. 2010, 30: 381-387. 10.1177/1090820X10373063.CrossRefPubMed
27.
go back to reference Pearl RA, Leedham SJ, Pacifico MD: The safety of autologous fat transfer in breast cancer: lessons from stem cell biology. J Plast Reconstr Aesthet Surg. 2011, 65: 283-288.CrossRefPubMed Pearl RA, Leedham SJ, Pacifico MD: The safety of autologous fat transfer in breast cancer: lessons from stem cell biology. J Plast Reconstr Aesthet Surg. 2011, 65: 283-288.CrossRefPubMed
28.
go back to reference Kim B, Roth C, Chung KC: Anaplastic large cell lymphoma and breast implants: a systematic review. Plast Reconstr Surg. 2011, 127: 2141-2150. 10.1097/PRS.0b013e3182172418.CrossRefPubMed Kim B, Roth C, Chung KC: Anaplastic large cell lymphoma and breast implants: a systematic review. Plast Reconstr Surg. 2011, 127: 2141-2150. 10.1097/PRS.0b013e3182172418.CrossRefPubMed
29.
go back to reference Hicok KC, Du Laney TV, Zhou YS: Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 2004, 10: 371-380. 10.1089/107632704323061735.CrossRefPubMed Hicok KC, Du Laney TV, Zhou YS: Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 2004, 10: 371-380. 10.1089/107632704323061735.CrossRefPubMed
30.
go back to reference Mulhall HJ, Labeed FH, Kazmi B, Costea DE, Hughes MP, Lewis MP: Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal Bioanal Chem. 2011, 401: 2455-2463. 10.1007/s00216-011-5337-0.CrossRefPubMed Mulhall HJ, Labeed FH, Kazmi B, Costea DE, Hughes MP, Lewis MP: Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal Bioanal Chem. 2011, 401: 2455-2463. 10.1007/s00216-011-5337-0.CrossRefPubMed
31.
go back to reference Gascoyne PR, Wang XB, Huang Y, Becker FF: Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl. 1997, 33: 670-678. 10.1109/28.585856.CrossRefPubMedPubMedCentral Gascoyne PR, Wang XB, Huang Y, Becker FF: Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl. 1997, 33: 670-678. 10.1109/28.585856.CrossRefPubMedPubMedCentral
32.
go back to reference de la Rosa C, Tilley PA, Fox JD, Kaler KV: Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis. IEEE Trans Biomed Eng. 2008, 55: 2426-2432.CrossRefPubMed de la Rosa C, Tilley PA, Fox JD, Kaler KV: Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis. IEEE Trans Biomed Eng. 2008, 55: 2426-2432.CrossRefPubMed
33.
go back to reference Banfalvi G: Overview of cell synchronization. Methods Mol Biol. 2011, 761: 1-23. 10.1007/978-1-61779-182-6_1.CrossRefPubMed Banfalvi G: Overview of cell synchronization. Methods Mol Biol. 2011, 761: 1-23. 10.1007/978-1-61779-182-6_1.CrossRefPubMed
34.
go back to reference Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW: Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res. 2009, 27: 1675-1680. 10.1002/jor.20933.CrossRefPubMed Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW: Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res. 2009, 27: 1675-1680. 10.1002/jor.20933.CrossRefPubMed
35.
go back to reference McNulty AL, Miller MR, O'Connor SK, Guilak F: The effects of adipokines on cartilage and meniscus catabolism. Connect Tissue Res. 2011 McNulty AL, Miller MR, O'Connor SK, Guilak F: The effects of adipokines on cartilage and meniscus catabolism. Connect Tissue Res. 2011
36.
go back to reference Brown WJ, Basil MD, Bocarnea MC: The influence of famous athletes on health beliefs and practices: Mark McGwire, child abuse prevention, and Androstenedione. J Health Commun. 2003, 8: 41-57. 10.1080/10810730305733.CrossRefPubMed Brown WJ, Basil MD, Bocarnea MC: The influence of famous athletes on health beliefs and practices: Mark McGwire, child abuse prevention, and Androstenedione. J Health Commun. 2003, 8: 41-57. 10.1080/10810730305733.CrossRefPubMed
Metadata
Title
Clinical use of Dieletrophoresis separation for live Adipose derived stem cells
Authors
Allan Y Wu
David M Morrow
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2012
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-10-99

Other articles of this Issue 1/2012

Journal of Translational Medicine 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.