Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2016

Open Access 01-12-2016 | Research

Clinical significance of mitofusin-2 and its signaling pathways in hepatocellular carcinoma

Authors: Yingsheng Wu, Dongkai Zhou, Xiaobo Xu, Xinyi Zhao, Pengfei Huang, Xiaohu Zhou, Wei Song, Hua Guo, Weilin Wang, Shusen Zheng

Published in: World Journal of Surgical Oncology | Issue 1/2016

Login to get access

Abstract

Background

The mitochondrial GTPase mitofusin-2 (MFN2) gene encodes a mitochondrial membrane protein that can induce apoptosis of hepatocellular carcinoma (HCC) via the mitochondrial apoptotic pathway, as validated in our previous research. However, little is known of the clinical significance of MFN2 expression and its signaling pathways in HCC.

Methods

MFN2 mRNA expression in tumor and adjacent non-tumor tissues from 115 patients with HCC was investigated using quantitative real-time PCR. The association of the MFN2 mRNA expression level with clinical and pathological parameters was evaluated statistically, while a comparative microarray analysis was used to identify MFN2 signaling pathways in HepG2 cells.

Results

MFN2 was significantly (p < 0.0001) downregulated in HCC tissues. Low MFN2 expression was significantly correlated with sex and preoperative alpha-fetoprotein (p < 0.05). Both a Kaplan–Meier survival curve and multivariate analyses showed that MFN2 was related to overall survival. A comparative gene expression microarray revealed 211 upregulated (58 %) and 153 downregulated (42 %) genes. Eighteen pathways were identified as the most significant pathways correlated with MFN2.

Conclusions

Low MFN2 expression in HCC indicated a worse overall survival. Crucial signaling molecules such as PI3K-AKT, cytokine receptor, and focal adhesion may participate in MFN2-mediated signaling pathway changes in HCC.
Appendix
Available only for authorised users
Literature
2.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: Globocan 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMed
3.
go back to reference European Association for Study of L, European Organisation for R, Treatment of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer. 2012;48:599–641.CrossRef European Association for Study of L, European Organisation for R, Treatment of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer. 2012;48:599–641.CrossRef
4.
go back to reference Land H, Parada LF, Weinberg RA. Cellular oncogenes and multistep carcinogenesis. Science. 1983;222:771–8.CrossRefPubMed Land H, Parada LF, Weinberg RA. Cellular oncogenes and multistep carcinogenesis. Science. 1983;222:771–8.CrossRefPubMed
5.
go back to reference Chiba T, Suzuki E, Saito T, Ogasawara S, Ooka Y, Tawada A, et al. Biological features and biomarkers in hepatocellular carcinoma. World J Hepatol. 2015;7:2020–8.CrossRefPubMedPubMedCentral Chiba T, Suzuki E, Saito T, Ogasawara S, Ooka Y, Tawada A, et al. Biological features and biomarkers in hepatocellular carcinoma. World J Hepatol. 2015;7:2020–8.CrossRefPubMedPubMedCentral
6.
go back to reference Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348:125–32.CrossRefPubMed Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348:125–32.CrossRefPubMed
7.
go back to reference Rojo M, Legros F, Chateau D, Lombes A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane gtpase fzo. J Cell Sci. 2002;115:1663–74.PubMed Rojo M, Legros F, Chateau D, Lombes A. Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane gtpase fzo. J Cell Sci. 2002;115:1663–74.PubMed
8.
go back to reference Ding Y, Gao H, Zhao L, Wang X, Zheng M. Mitofusin 2-deficiency suppresses cell proliferation through disturbance of autophagy. PLoS One. 2015;10:e0121328.CrossRefPubMedPubMedCentral Ding Y, Gao H, Zhao L, Wang X, Zheng M. Mitofusin 2-deficiency suppresses cell proliferation through disturbance of autophagy. PLoS One. 2015;10:e0121328.CrossRefPubMedPubMedCentral
9.
go back to reference Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36:449–51.CrossRefPubMed Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36:449–51.CrossRefPubMed
10.
go back to reference Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem. 2003;278:17190–7.CrossRefPubMed Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem. 2003;278:17190–7.CrossRefPubMed
11.
go back to reference Hernandez-Alvarez MI, Thabit H, Burns N, Shah S, Brema I, Hatunic M, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care. 2010;33:645–51.CrossRefPubMed Hernandez-Alvarez MI, Thabit H, Burns N, Shah S, Brema I, Hatunic M, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1{alpha}/mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care. 2010;33:645–51.CrossRefPubMed
12.
go back to reference Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res. 2007;101:1113–22.CrossRefPubMed Guo X, Chen KH, Guo Y, Liao H, Tang J, Xiao RP. Mitofusin 2 triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res. 2007;101:1113–22.CrossRefPubMed
13.
go back to reference Shen T, Zheng M, Cao C, Chen C, Tang J, Zhang W, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282:23354–61.CrossRefPubMed Shen T, Zheng M, Cao C, Chen C, Tang J, Zhang W, et al. Mitofusin-2 is a major determinant of oxidative stress-mediated heart muscle cell apoptosis. J Biol Chem. 2007;282:23354–61.CrossRefPubMed
14.
go back to reference Wang W, Zhu F, Wang S, Wei J, Jia C, Zhang Y, et al. HSG provides antitumor efficacy on hepatocellular carcinoma both in vitro and in vivo. Oncol Rep. 2010;24:183–8.PubMed Wang W, Zhu F, Wang S, Wei J, Jia C, Zhang Y, et al. HSG provides antitumor efficacy on hepatocellular carcinoma both in vitro and in vivo. Oncol Rep. 2010;24:183–8.PubMed
15.
go back to reference Wang W, Lu J, Zhu F, Wei J, Jia C, Zhang Y, et al. Pro-apoptotic and anti-proliferative effects of mitofusin-2 via bax signaling in hepatocellular carcinoma cells. Med Oncol. 2012;29:70–6.CrossRefPubMed Wang W, Lu J, Zhu F, Wei J, Jia C, Zhang Y, et al. Pro-apoptotic and anti-proliferative effects of mitofusin-2 via bax signaling in hepatocellular carcinoma cells. Med Oncol. 2012;29:70–6.CrossRefPubMed
16.
go back to reference Wang W, Xie Q, Zhou X, Yao J, Zhu X, Huang P, et al. Mitofusin-2 triggers mitochondria Ca2+ influx from the endoplasmic reticulum to induce apoptosis in hepatocellular carcinoma cells. Cancer Lett. 2015;358:47–58.CrossRefPubMed Wang W, Xie Q, Zhou X, Yao J, Zhu X, Huang P, et al. Mitofusin-2 triggers mitochondria Ca2+ influx from the endoplasmic reticulum to induce apoptosis in hepatocellular carcinoma cells. Cancer Lett. 2015;358:47–58.CrossRefPubMed
17.
go back to reference Wu L, Li Z, Zhang Y, Zhang P, Zhu X, Huang J, et al. Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther. 2008;7:222–32.CrossRefPubMed Wu L, Li Z, Zhang Y, Zhang P, Zhu X, Huang J, et al. Adenovirus-expressed human hyperplasia suppressor gene induces apoptosis in cancer cells. Mol Cancer Ther. 2008;7:222–32.CrossRefPubMed
18.
go back to reference Jin B, Fu G, Pan H, Cheng X, Zhou L, Lv J, et al. Anti-tumour efficacy of mitofusin-2 in urinary bladder carcinoma. Med Oncol. 2011;28 Suppl 1:S373–80.CrossRefPubMed Jin B, Fu G, Pan H, Cheng X, Zhou L, Lv J, et al. Anti-tumour efficacy of mitofusin-2 in urinary bladder carcinoma. Med Oncol. 2011;28 Suppl 1:S373–80.CrossRefPubMed
20.
go back to reference Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.CrossRefPubMed Croft D, O’Kelly G, Wu G, Haw R, Gillespie M, Matthews L, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 2011;39:D691–7.CrossRefPubMed
21.
go back to reference Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, et al. The biogrid interaction database: 2015 update. Nucleic Acids Res. 2015;43:D470–8.CrossRefPubMed Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, et al. The biogrid interaction database: 2015 update. Nucleic Acids Res. 2015;43:D470–8.CrossRefPubMed
22.
go back to reference Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–51.CrossRefPubMedPubMedCentral Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–51.CrossRefPubMedPubMedCentral
23.
go back to reference Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009;37:D767–72.CrossRefPubMed Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009;37:D767–72.CrossRefPubMed
25.
go back to reference Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al. The MIntAct project—intact as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42:D358–63.CrossRefPubMed Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al. The MIntAct project—intact as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014;42:D358–63.CrossRefPubMed
26.
go back to reference Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40:D857–61.CrossRefPubMed Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40:D857–61.CrossRefPubMed
27.
go back to reference Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CrossRefPubMedPubMedCentral
28.
go back to reference Wu G, Dawson E, Duong A, Haw R, Stein L. Reactomefiviz: a cytoscape app for pathway and network-based data analysis. F1000Res. 2014;3:146.PubMedPubMedCentral Wu G, Dawson E, Duong A, Haw R, Stein L. Reactomefiviz: a cytoscape app for pathway and network-based data analysis. F1000Res. 2014;3:146.PubMedPubMedCentral
29.
go back to reference Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–101. discussion −3, 19–28, 244–52.CrossRefPubMed Kanehisa M. The KEGG database. Novartis Found Symp. 2002;247:91–101. discussion −3, 19–28, 244–52.CrossRefPubMed
30.
go back to reference Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41:D377–86.CrossRefPubMed Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2013;41:D377–86.CrossRefPubMed
31.
go back to reference Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the pathway interaction database. Nucleic Acids Res. 2009;37:D674–9.CrossRefPubMed Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the pathway interaction database. Nucleic Acids Res. 2009;37:D674–9.CrossRefPubMed
32.
go back to reference Lou Y, Li R, Liu J, Zhang Y, Zhang X, Jin B, et al. Mitofusin-2 over-expresses and leads to dysregulation of cell cycle and cell invasion in lung adenocarcinoma. Med Oncol. 2015;32:132.CrossRefPubMed Lou Y, Li R, Liu J, Zhang Y, Zhang X, Jin B, et al. Mitofusin-2 over-expresses and leads to dysregulation of cell cycle and cell invasion in lung adenocarcinoma. Med Oncol. 2015;32:132.CrossRefPubMed
33.
go back to reference Wang W, Cheng X, Lu J, Wei J, Fu G, Zhu F, et al. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun. 2010;400:587–92.CrossRefPubMed Wang W, Cheng X, Lu J, Wei J, Fu G, Zhu F, et al. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun. 2010;400:587–92.CrossRefPubMed
34.
go back to reference Wang W, Zhou D, Wei J, Wu Z, Cheng X, Sun Q, et al. Hepatitis b virus x protein inhibits p53-mediated upregulation of mitofusin-2 in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2012;421:355–60.CrossRefPubMed Wang W, Zhou D, Wei J, Wu Z, Cheng X, Sun Q, et al. Hepatitis b virus x protein inhibits p53-mediated upregulation of mitofusin-2 in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 2012;421:355–60.CrossRefPubMed
35.
go back to reference Wang W, Lin H, Zhou L, Zhu Q, Gao S, Xie H, et al. Microrna-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. Eur J Surg Oncol. 2014;40:1586–94.CrossRefPubMed Wang W, Lin H, Zhou L, Zhu Q, Gao S, Xie H, et al. Microrna-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. Eur J Surg Oncol. 2014;40:1586–94.CrossRefPubMed
36.
go back to reference Zawada I, Masternak MM, List EO, Stout MB, Berryman DE, Lewinski A, et al. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging. 2015;7:195–204.CrossRefPubMedPubMedCentral Zawada I, Masternak MM, List EO, Stout MB, Berryman DE, Lewinski A, et al. Gene expression of key regulators of mitochondrial biogenesis is sex dependent in mice with growth hormone receptor deletion in liver. Aging. 2015;7:195–204.CrossRefPubMedPubMedCentral
37.
go back to reference Bunney TD, Katan M. Phosphoinositide signalling in cancer: beyond pi3k and pten. Nat Rev Cancer. 2010;10:342–52.CrossRefPubMed Bunney TD, Katan M. Phosphoinositide signalling in cancer: beyond pi3k and pten. Nat Rev Cancer. 2010;10:342–52.CrossRefPubMed
39.
go back to reference Chen JS, Huang XH, Wang Q, Chen XL, Fu XH, Tan HX, et al. FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2010;27:71–82.CrossRefPubMed Chen JS, Huang XH, Wang Q, Chen XL, Fu XH, Tan HX, et al. FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2010;27:71–82.CrossRefPubMed
40.
go back to reference Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell. 2002;1:289–98.CrossRefPubMed Schmitt CA, Fridman JS, Yang M, Baranov E, Hoffman RM, Lowe SW. Dissecting p53 tumor suppressor functions in vivo. Cancer Cell. 2002;1:289–98.CrossRefPubMed
41.
go back to reference Sui Y, Zheng X, Zhao D. Rab31 promoted hepatocellular carcinoma (hcc) progression via inhibition of cell apoptosis induced by pi3k/akt/bcl-2/bax pathway. Tumour Biol. 2015;36:8661–70.CrossRefPubMed Sui Y, Zheng X, Zhao D. Rab31 promoted hepatocellular carcinoma (hcc) progression via inhibition of cell apoptosis induced by pi3k/akt/bcl-2/bax pathway. Tumour Biol. 2015;36:8661–70.CrossRefPubMed
42.
go back to reference Cui SX, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH, et al. Des-gamma-carboxy prothrombin antagonizes the effects of Sorafenib on human hepatocellular carcinoma through activation of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways. Oncotarget. 2016. Epub ahead of print Cui SX, Shi WN, Song ZY, Wang SQ, Yu XF, Gao ZH, et al. Des-gamma-carboxy prothrombin antagonizes the effects of Sorafenib on human hepatocellular carcinoma through activation of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways. Oncotarget. 2016. Epub ahead of print
43.
go back to reference Qiu FN, Huang Y, Chen DY, Li F, Wu YA, Wu WB, et al. Eukaryotic elongation factor-1alpha 2 knockdown inhibits hepatocarcinogenesis by suppressing PI3k/Akt/NF-kappaB signaling. World J Gastroenterol. 2016;22:4226–37.CrossRefPubMedPubMedCentral Qiu FN, Huang Y, Chen DY, Li F, Wu YA, Wu WB, et al. Eukaryotic elongation factor-1alpha 2 knockdown inhibits hepatocarcinogenesis by suppressing PI3k/Akt/NF-kappaB signaling. World J Gastroenterol. 2016;22:4226–37.CrossRefPubMedPubMedCentral
44.
go back to reference Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A. 2013;110:17963–8.CrossRefPubMedPubMedCentral Ichinohe T, Yamazaki T, Koshiba T, Yanagi Y. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A. 2013;110:17963–8.CrossRefPubMedPubMedCentral
Metadata
Title
Clinical significance of mitofusin-2 and its signaling pathways in hepatocellular carcinoma
Authors
Yingsheng Wu
Dongkai Zhou
Xiaobo Xu
Xinyi Zhao
Pengfei Huang
Xiaohu Zhou
Wei Song
Hua Guo
Weilin Wang
Shusen Zheng
Publication date
01-12-2016
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2016
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/s12957-016-0922-5

Other articles of this Issue 1/2016

World Journal of Surgical Oncology 1/2016 Go to the issue