Skip to main content
Top
Published in: Cancer Cell International 1/2015

Open Access 01-12-2015 | Primary research

Clinical relevance of thyroid cell models in redox research

Authors: Francesca Cammarota, Francesco Fiscardi, Tiziana Esposito, Gabriella de Vita, Marco Salvatore, Mikko O. Laukkanen

Published in: Cancer Cell International | Issue 1/2015

Login to get access

Abstract

Background

Thyroid-derived cell models are commonly used to investigate the characteristics of thyroid cancers. It is noteworthy that each in vitro single cell model system imitates only a few characteristics of thyroid cancer depending on e.g. source of cells or oncogene used to transform the cells.

Methods

In the current work we utilized rat thyroid cancer cell models to determine their clinical relevance in redox gene studies by comparing in vitro expression data to thyroid Oncomine microarray database. To survey the cell lines we analyzed mRNA expression of genes that produce superoxide anion (nox family), genes that catalyze destruction of superoxide anion to hydrogen peroxide (sod family), and genes that remove hydrogen peroxide from cellular environment (catalase, gpx family and prdx family).

Results

Based on the current results, rat thyroid PC Cl3, PC PTC1, PC E1A, or FRLT5 cell models can be used to study NOX2, NOX4, SOD2, SOD3, CATALASE, GPX1, GPX2, GPX5, PRDX2, and PRDX3 gene expression and function.

Conclusions

Redox gene expression in rat originated single cell model systems used to study human thyroid carcinogenesis corresponds only partly with human redox gene expression, which may be caused by differences in redox gene activation stimulus. The data suggest careful estimation of the data observed in rat thyroid in vitro models.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ambesi-Impiombato FS, Parks LA, Coon HG. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA. 1980;77(6):3455–9.PubMedCentralCrossRefPubMed Ambesi-Impiombato FS, Parks LA, Coon HG. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA. 1980;77(6):3455–9.PubMedCentralCrossRefPubMed
2.
go back to reference De Vita G, Bauer L, da Costa VM, De Felice M, Baratta MG, et al. Dose-dependent inhibition of thyroid differentiation by RAS oncogenes. Mol Endocrinol. 2005;19(1):76–89.CrossRefPubMed De Vita G, Bauer L, da Costa VM, De Felice M, Baratta MG, et al. Dose-dependent inhibition of thyroid differentiation by RAS oncogenes. Mol Endocrinol. 2005;19(1):76–89.CrossRefPubMed
3.
go back to reference Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol. 1987;7(9):3365–70.PubMedCentralCrossRefPubMed Fusco A, Berlingieri MT, Di Fiore PP, Portella G, Grieco M, Vecchio G. One- and two-step transformations of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol. 1987;7(9):3365–70.PubMedCentralCrossRefPubMed
4.
go back to reference Grieco M, Santoro M, Berlingieri MT, Donghi R, Pierotti MA, Della Porta G, et al. Molecular cloning of PTC, a new oncogene found activated in human thyroid papillary carcinomas and their lymph node metastases. Ann N Y Acad Sci. 1988;551:380–1.CrossRefPubMed Grieco M, Santoro M, Berlingieri MT, Donghi R, Pierotti MA, Della Porta G, et al. Molecular cloning of PTC, a new oncogene found activated in human thyroid papillary carcinomas and their lymph node metastases. Ann N Y Acad Sci. 1988;551:380–1.CrossRefPubMed
5.
go back to reference Mitsushita J, Lambeth JD, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 2004;64(10):3580–5.CrossRefPubMed Mitsushita J, Lambeth JD, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res. 2004;64(10):3580–5.CrossRefPubMed
6.
go back to reference Laatikainen LE, Castellone MD, Hebrant A, Hoste C, Cantisani MC, Laurila JP, et al. Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer. Endocr Relat Cancer. 2010;17(3):785–96.CrossRefPubMed Laatikainen LE, Castellone MD, Hebrant A, Hoste C, Cantisani MC, Laurila JP, et al. Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer. Endocr Relat Cancer. 2010;17(3):785–96.CrossRefPubMed
7.
go back to reference Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, et al. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab. 2007;92(10):3764–73.CrossRefPubMed Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, et al. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab. 2007;92(10):3764–73.CrossRefPubMed
8.
go back to reference Castellone MD, Langella A, Cantara S, Laurila JP, Laatikainen LE, Bellelli R, et al. Extracellular superoxide dismutase induces mouse embryonic fibroblast proliferative burst, growth arrest, immortalization, and consequent in vivo tumorigenesis. Antioxid Redox Signal. 2014;21(10):1460–74.CrossRefPubMed Castellone MD, Langella A, Cantara S, Laurila JP, Laatikainen LE, Bellelli R, et al. Extracellular superoxide dismutase induces mouse embryonic fibroblast proliferative burst, growth arrest, immortalization, and consequent in vivo tumorigenesis. Antioxid Redox Signal. 2014;21(10):1460–74.CrossRefPubMed
9.
go back to reference Esworthy RS, Ho YS, Chu FF. The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch Biochem Biophys. 1997;340(1):59–63.CrossRefPubMed Esworthy RS, Ho YS, Chu FF. The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch Biochem Biophys. 1997;340(1):59–63.CrossRefPubMed
10.
go back to reference Ukai Y, Kishimoto T, Ohdate T, Izawa S, Inoue Y. Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem Biophys Res Commun. 2011;411(3):580–5.CrossRefPubMed Ukai Y, Kishimoto T, Ohdate T, Izawa S, Inoue Y. Glutathione peroxidase 2 in Saccharomyces cerevisiae is distributed in mitochondria and involved in sporulation. Biochem Biophys Res Commun. 2011;411(3):580–5.CrossRefPubMed
11.
go back to reference Zimmermann R, Flohe L, Weser U, Hartman HJ. Inhibition of lipid peroxidation in isolated inner membrane of rat liver mitochondria by superoxide dismutase. FEBS Lett. 1973;29(2):117–20.CrossRefPubMed Zimmermann R, Flohe L, Weser U, Hartman HJ. Inhibition of lipid peroxidation in isolated inner membrane of rat liver mitochondria by superoxide dismutase. FEBS Lett. 1973;29(2):117–20.CrossRefPubMed
13.
go back to reference Goretzki PE, Koob R, Koller T, Simon R, Branscheid D, Clark OH, et al. The effect of thyrotropin and cAMP on DNA synthesis and cell growth of human thyrocytes in monolayer culture. Surgery. 1986;100(6):1053–61.PubMed Goretzki PE, Koob R, Koller T, Simon R, Branscheid D, Clark OH, et al. The effect of thyrotropin and cAMP on DNA synthesis and cell growth of human thyrocytes in monolayer culture. Surgery. 1986;100(6):1053–61.PubMed
14.
go back to reference Corda D, Bizzarri C, Di Girolamo M, Valitutti S, Luini A. G protein-linked receptors in the thyroid. Adv Exp Med Biol. 1989;261:245–69.CrossRefPubMed Corda D, Bizzarri C, Di Girolamo M, Valitutti S, Luini A. G protein-linked receptors in the thyroid. Adv Exp Med Biol. 1989;261:245–69.CrossRefPubMed
15.
go back to reference Yi JW, Park JY, Sung JY, Kwak SH, Yu J, Chang JH, et al. Genomic evidence of reactive oxygen species elevation in papillary thyroid carcinoma with Hashimoto thyroiditis. Endocr J. 2015 (Epub ahead of print). Yi JW, Park JY, Sung JY, Kwak SH, Yu J, Chang JH, et al. Genomic evidence of reactive oxygen species elevation in papillary thyroid carcinoma with Hashimoto thyroiditis. Endocr J. 2015 (Epub ahead of print).
17.
go back to reference Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60(4):557–63.CrossRefPubMed Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60(4):557–63.CrossRefPubMed
18.
go back to reference Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997;15(11):1263–73.CrossRefPubMed Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, et al. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene. 1997;15(11):1263–73.CrossRefPubMed
19.
go back to reference Gallimore PH, Turnell AS. Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene. 2001;20(54):7824–35.CrossRefPubMed Gallimore PH, Turnell AS. Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene. 2001;20(54):7824–35.CrossRefPubMed
20.
go back to reference Berlingieri MT, Akamizu T, Fusco A, Crieco M, Colletta G, Cirafici AM, et al. Thyrotropin receptor gene expression in oncogene-transfected rat thyroid cells: correlation between transformation, loss of thyrotropin-dependent growth, and loss of thyrotropin receptor gene expression. Biochem Biophys Res Commun. 1990;173(1):172–8.CrossRefPubMed Berlingieri MT, Akamizu T, Fusco A, Crieco M, Colletta G, Cirafici AM, et al. Thyrotropin receptor gene expression in oncogene-transfected rat thyroid cells: correlation between transformation, loss of thyrotropin-dependent growth, and loss of thyrotropin receptor gene expression. Biochem Biophys Res Commun. 1990;173(1):172–8.CrossRefPubMed
21.
go back to reference Fukushima T, Takenoshita S. Roles of RAS and BRAF mutations in thyroid carcinogenesis. Fukushima J Med Sci. 2005;51:67–75.CrossRefPubMed Fukushima T, Takenoshita S. Roles of RAS and BRAF mutations in thyroid carcinogenesis. Fukushima J Med Sci. 2005;51:67–75.CrossRefPubMed
22.
go back to reference Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.CrossRefPubMed Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, et al. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21(17):3226–35.CrossRefPubMed
23.
go back to reference Adachi Y, Shibai Y, Mitsushita J, Shang WH, Hirose K, Kamata T. Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene. 2008;27(36):4921–32.CrossRefPubMed Adachi Y, Shibai Y, Mitsushita J, Shang WH, Hirose K, Kamata T. Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6. Oncogene. 2008;27(36):4921–32.CrossRefPubMed
24.
go back to reference Lee J, Choi KJ, Lim MJ, Hong F, Choi TG, Tak E, et al. Proto-oncogenic H-Ras, K-Ras, and N-Ras are involved in muscle differentiation via phosphatidylinositol 3-kinase. Cell Res. 2010;20(8):919–34.CrossRefPubMed Lee J, Choi KJ, Lim MJ, Hong F, Choi TG, Tak E, et al. Proto-oncogenic H-Ras, K-Ras, and N-Ras are involved in muscle differentiation via phosphatidylinositol 3-kinase. Cell Res. 2010;20(8):919–34.CrossRefPubMed
25.
go back to reference Ogrunc M, Di Micco R, Liontos M, Liontos M, Bombardelli L, Mione M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21(6):998–1012.PubMedCentralCrossRefPubMed Ogrunc M, Di Micco R, Liontos M, Liontos M, Bombardelli L, Mione M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21(6):998–1012.PubMedCentralCrossRefPubMed
26.
go back to reference Manea A, Tanase LI, Raicu M, Simionescu M. Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2010;30(1):105–12.CrossRefPubMed Manea A, Tanase LI, Raicu M, Simionescu M. Jak/STAT signaling pathway regulates nox1 and nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler Thromb Vasc Biol. 2010;30(1):105–12.CrossRefPubMed
27.
go back to reference Lim H, Kim D, Lee SJ. Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J Biol Chem. 2013;288(11):7572–9.PubMedCentralCrossRefPubMed Lim H, Kim D, Lee SJ. Toll-like receptor 2 mediates peripheral nerve injury-induced NADPH oxidase 2 expression in spinal cord microglia. J Biol Chem. 2013;288(11):7572–9.PubMedCentralCrossRefPubMed
28.
go back to reference Li L, He Q, Huang X, Man Y, Zhou Y, Wang S, et al. NOX3-derived reactive oxygen species promote TNF-alpha-induced reductions in hepatocyte glycogen levels via a JNK pathway. FEBS Lett. 2010;584(5):995–1000.CrossRefPubMed Li L, He Q, Huang X, Man Y, Zhou Y, Wang S, et al. NOX3-derived reactive oxygen species promote TNF-alpha-induced reductions in hepatocyte glycogen levels via a JNK pathway. FEBS Lett. 2010;584(5):995–1000.CrossRefPubMed
29.
go back to reference Rojo AI, Salinas M, Martin D, Perona R, Cuadrado A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci. 2004;24(33):7324–34.CrossRefPubMed Rojo AI, Salinas M, Martin D, Perona R, Cuadrado A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci. 2004;24(33):7324–34.CrossRefPubMed
30.
go back to reference Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem. 2005;280(17):16916–24.CrossRefPubMed Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem. 2005;280(17):16916–24.CrossRefPubMed
31.
go back to reference Laurila JP, Castellone MD, Curcio A, Laatikainen LE, Haaparanta-Solin M, Gronroos TJ, et al. Extracellular superoxide dismutase is a growth regulatory mediator of tissue injury recovery. Mol Ther. 2009;17(3):448–54.PubMedCentralCrossRefPubMed Laurila JP, Castellone MD, Curcio A, Laatikainen LE, Haaparanta-Solin M, Gronroos TJ, et al. Extracellular superoxide dismutase is a growth regulatory mediator of tissue injury recovery. Mol Ther. 2009;17(3):448–54.PubMedCentralCrossRefPubMed
32.
go back to reference Evans PJ. The regulation of hepatic tyrosine aminotransferase. Biochim Biophys Acta. 1981;677:433–44.CrossRefPubMed Evans PJ. The regulation of hepatic tyrosine aminotransferase. Biochim Biophys Acta. 1981;677:433–44.CrossRefPubMed
33.
go back to reference Awad H, Nolette N, Hinton M, Dakshinamurti S. AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol. 2014;49(9):885–97.CrossRefPubMed Awad H, Nolette N, Hinton M, Dakshinamurti S. AMPK and FoxO1 regulate catalase expression in hypoxic pulmonary arterial smooth muscle. Pediatr Pulmonol. 2014;49(9):885–97.CrossRefPubMed
34.
go back to reference Verschoor ML, Verschoor CP, Singh G. Ets-1 global gene expression profile reveals associations with metabolism and oxidative stress in ovarian and breast cancers. Cancer Metab. 2013;1(1):17.PubMedCentralCrossRefPubMed Verschoor ML, Verschoor CP, Singh G. Ets-1 global gene expression profile reveals associations with metabolism and oxidative stress in ovarian and breast cancers. Cancer Metab. 2013;1(1):17.PubMedCentralCrossRefPubMed
36.
go back to reference Chung SS, Kim M, Youn BS, Lee NS, Park JW, Lee IK, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol. 2009;29(1):20–30.PubMedCentralCrossRefPubMed Chung SS, Kim M, Youn BS, Lee NS, Park JW, Lee IK, et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol. 2009;29(1):20–30.PubMedCentralCrossRefPubMed
37.
go back to reference Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705–43.PubMedCentralCrossRefPubMed Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705–43.PubMedCentralCrossRefPubMed
38.
go back to reference Kim SU, Park YH, Min JS, Sun HN, Han YH, Hua JM, et al. Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-kappaB-mediated iNOS induction and microglial activation. J Neuroimmunol. 2013;259(1–2):26–36.CrossRefPubMed Kim SU, Park YH, Min JS, Sun HN, Han YH, Hua JM, et al. Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-kappaB-mediated iNOS induction and microglial activation. J Neuroimmunol. 2013;259(1–2):26–36.CrossRefPubMed
39.
go back to reference Sun HN, Kim SU, Huang SM, Kim JM, Park Yh, Kim SH, et al. Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J Neurochem. 2010;114(1):39–50.PubMed Sun HN, Kim SU, Huang SM, Kim JM, Park Yh, Kim SH, et al. Microglial peroxiredoxin V acts as an inducible anti-inflammatory antioxidant through cooperation with redox signaling cascades. J Neurochem. 2010;114(1):39–50.PubMed
40.
go back to reference Bast A, Fischer K, Erttmann SF, Walther R. Induction of peroxiredoxin I gene expression by LPS involves the Src/PI3K/JNK signalling pathway. Biochim Biophys Acta. 2010;1799(5–6):402–10.CrossRefPubMed Bast A, Fischer K, Erttmann SF, Walther R. Induction of peroxiredoxin I gene expression by LPS involves the Src/PI3K/JNK signalling pathway. Biochim Biophys Acta. 2010;1799(5–6):402–10.CrossRefPubMed
41.
go back to reference Zha X, Wu G, Zhao X, Zhou L, Zhang H, Li J, et al. PRDX6 protects ARPE-19 cells from oxidative damage via PI3K/AKT signaling. Cell Physiol Biochem. 2015;36(6):2217–28.CrossRefPubMed Zha X, Wu G, Zhao X, Zhou L, Zhang H, Li J, et al. PRDX6 protects ARPE-19 cells from oxidative damage via PI3K/AKT signaling. Cell Physiol Biochem. 2015;36(6):2217–28.CrossRefPubMed
42.
go back to reference Yun SJ, Seo JJ, Chae JY, Lee CC. Peroxiredoxin I and II are up-regulated during differentiation of epidermal keratinocytes. Arch Dermatol Res. 2005;296(12):555–9.CrossRefPubMed Yun SJ, Seo JJ, Chae JY, Lee CC. Peroxiredoxin I and II are up-regulated during differentiation of epidermal keratinocytes. Arch Dermatol Res. 2005;296(12):555–9.CrossRefPubMed
43.
go back to reference Wang HQ, Du ZX, Liu BQ, Gao YY, Meng X, Guan Y, et al. TNF-related apoptosis-inducing ligand suppresses PRDX4 expression. FEBS Lett. 2009;583(9):1511–5.CrossRefPubMed Wang HQ, Du ZX, Liu BQ, Gao YY, Meng X, Guan Y, et al. TNF-related apoptosis-inducing ligand suppresses PRDX4 expression. FEBS Lett. 2009;583(9):1511–5.CrossRefPubMed
44.
go back to reference Park HJ, Carr JR, Wang Z, Noguera V, Hay N, Tyner AL, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 2009;28(19):2908–18.PubMedCentralCrossRefPubMed Park HJ, Carr JR, Wang Z, Noguera V, Hay N, Tyner AL, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 2009;28(19):2908–18.PubMedCentralCrossRefPubMed
45.
go back to reference Makino J, Kamiya T, Hara H, Adachi T. TPA induces the expression of EC-SOD in human monocytic THP-1 cells: involvement of PKC, MEK/ERK and NOX-derived ROS. Free Radic Res. 2012;46(5):637–44.CrossRefPubMed Makino J, Kamiya T, Hara H, Adachi T. TPA induces the expression of EC-SOD in human monocytic THP-1 cells: involvement of PKC, MEK/ERK and NOX-derived ROS. Free Radic Res. 2012;46(5):637–44.CrossRefPubMed
46.
go back to reference Kim SH, Kim MO, Gao P, Youm CA, Park HR, Lee TS, et al. Overexpression of extracellular superoxide dismutase (EC-SOD) in mouse skin plays a protective role in DMBA/TPA-induced tumor formation. Oncol Res. 2005;15(7–8):333–41.PubMed Kim SH, Kim MO, Gao P, Youm CA, Park HR, Lee TS, et al. Overexpression of extracellular superoxide dismutase (EC-SOD) in mouse skin plays a protective role in DMBA/TPA-induced tumor formation. Oncol Res. 2005;15(7–8):333–41.PubMed
47.
go back to reference Laatikainen LE, Incoronato M, Castellone MD, Laurila JP, Santoro M, Laukkanen MO. SOD3 decreases ischemic injury derived apoptosis through phosphorylation of Erk1/2, Akt, and FoxO3a. PLoS One. 2011;6(8):e24456.PubMedCentralCrossRefPubMed Laatikainen LE, Incoronato M, Castellone MD, Laurila JP, Santoro M, Laukkanen MO. SOD3 decreases ischemic injury derived apoptosis through phosphorylation of Erk1/2, Akt, and FoxO3a. PLoS One. 2011;6(8):e24456.PubMedCentralCrossRefPubMed
48.
go back to reference Laukkanen MO, Cammarota F, Esposito T, Salvatore M, Laukkanen MO. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI. PLoS One. 2015;10(3):e0121441.PubMedCentralCrossRefPubMed Laukkanen MO, Cammarota F, Esposito T, Salvatore M, Laukkanen MO. Extracellular superoxide dismutase regulates the expression of small gtpase regulatory proteins GEFs, GAPs, and GDI. PLoS One. 2015;10(3):e0121441.PubMedCentralCrossRefPubMed
Metadata
Title
Clinical relevance of thyroid cell models in redox research
Authors
Francesca Cammarota
Francesco Fiscardi
Tiziana Esposito
Gabriella de Vita
Marco Salvatore
Mikko O. Laukkanen
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2015
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-015-0264-3

Other articles of this Issue 1/2015

Cancer Cell International 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine