Skip to main content
Top
Published in: Cancer Cell International 1/2015

Open Access 01-12-2015 | Primary research

Analyzing the gene expression profile of anaplastic histology Wilms’ tumor with real-time polymerase chain reaction arrays

Authors: Jun Lu, Yan-Fang Tao, Zhi-Heng Li, Lan Cao, Shao-Yan Hu, Na-Na Wang, Xiao-Juan Du, Li-Chao Sun, Wen-Li Zhao, Pei-Fang Xiao, Fang Fang, Li-xiao Xu, Yan-Hong Li, Gang Li, He Zhao, Jian Ni, Jian Wang, Xing Feng, Jian Pan

Published in: Cancer Cell International | Issue 1/2015

Login to get access

Abstract

Background

Wilms’ tumor (WT) is one of the most common malignant neoplasms of the urinary tract in children. Anaplastic histology (unfavorable histology) accounts for about 10% of whole WTs, and it is the single most important histologic predictor of treatment response and survival in patients with WT; however, until now the molecular basis of this phenotype is not very clearly.

Methods

A real-time polymerase chain reaction (PCR) array was designed and tested. Next, the gene expression profile of pediatric anaplastic histology WT and normal adjacent tissues were analyzed. These expression data were anlyzed with Multi Experiment View (MEV) cluster software further. Datasets representing genes with altered expression profiles derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool (IPA).

Results

88 real-time PCR primer pairs for quantitative gene expression analysis of key genes involved in pediatric anaplastic histology WT were designed and tested. The gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal controls; we identified 15 genes that are up-regulated and 16 genes that are down-regulated in the former. To investigate biological interactions of these differently regulated genes, datasets representing genes with altered expression profiles were imported into the IPA for further analysis, which revealed three significant networks: Cancer, Hematological Disease, and Gene Expression, which included 27 focus molecules and a significance score of 43. The IPA analysis also grouped the differentially expressed genes into biological mechanisms related to Cell Death and Survival 1.15E−12, Cellular Development 2.84E−11, Cellular Growth and Proliferation 2.84E-11, Gene Expression 4.43E−10, and DNA Replication, Recombination, and Repair 1.39E−07. The important upstream regulators of pediatric anaplastic histology WT were TP53 and TGFβ1 signaling (P = 1.15E−14 and 3.79E−13, respectively).

Conclusions

Our study demonstrates that the gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal tissues with real-time PCR array. We identified some genes that are dysregulated in pediatric anaplastic histology WT for the first time, such as HDAC7, and IPA analysis showed the most important pathways for pediatric anaplastic histology WT are TP53 and TGFβ1 signaling. This work may provide new clues into the molecular mechanisms behind pediatric anaplastic histology WT.
Appendix
Available only for authorised users
Literature
1.
3.
go back to reference Cook A, Farhat W, Khoury A. Update on Wilms’ tumor in children. J Med Liban. 2005;53(2):85–90.PubMed Cook A, Farhat W, Khoury A. Update on Wilms’ tumor in children. J Med Liban. 2005;53(2):85–90.PubMed
4.
go back to reference Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47(6):461–70.PubMedCentralPubMedCrossRef Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47(6):461–70.PubMedCentralPubMedCrossRef
5.
go back to reference Cardoso LC, De Souza KR, De ORAH, Andrade RC, Britto Jr AC, De Lima MA, et al. WT1, WTX and CTNNB1 mutation analysis in 43 patients with sporadic Wilms’ tumor. Oncol Rep. 2013;29(1):315–20.PubMed Cardoso LC, De Souza KR, De ORAH, Andrade RC, Britto Jr AC, De Lima MA, et al. WT1, WTX and CTNNB1 mutation analysis in 43 patients with sporadic Wilms’ tumor. Oncol Rep. 2013;29(1):315–20.PubMed
6.
go back to reference Corbin M, de Reynies A, Rickman DS, Berrebi D, Boccon-Gibod L, Cohen-Gogo S, et al. WNT/beta-catenin pathway activation in Wilms tumors: a unifying mechanism with multiple entries? Genes Chromosomes Cancer. 2009;48(9):816–27.PubMedCrossRef Corbin M, de Reynies A, Rickman DS, Berrebi D, Boccon-Gibod L, Cohen-Gogo S, et al. WNT/beta-catenin pathway activation in Wilms tumors: a unifying mechanism with multiple entries? Genes Chromosomes Cancer. 2009;48(9):816–27.PubMedCrossRef
7.
go back to reference Fukuzawa R, Anaka MR, Weeks RJ, Morison IM, Reeve AE. Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene. 2009;28(8):1063–75.PubMedCrossRef Fukuzawa R, Anaka MR, Weeks RJ, Morison IM, Reeve AE. Canonical WNT signalling determines lineage specificity in Wilms tumour. Oncogene. 2009;28(8):1063–75.PubMedCrossRef
8.
go back to reference Yao W, Li K, Xiao X, Gao J, Dong K, Lv Z. Outcomes of Wilms’ tumor in eastern China: 10 years of experience at a single center. J Investig Surg. 2012;25(3):181–5.CrossRef Yao W, Li K, Xiao X, Gao J, Dong K, Lv Z. Outcomes of Wilms’ tumor in eastern China: 10 years of experience at a single center. J Investig Surg. 2012;25(3):181–5.CrossRef
9.
go back to reference Graf N, van Tinteren H, Bergeron C, Pein F, van den Heuvel-Eibrink MM, Sandstedt B, et al. Characteristics and outcome of stage II and III non-anaplastic Wilms’ tumour treated according to the SIOP trial and study 93–01. Eur J Cancer. 2012;48(17):3240–8.PubMedCrossRef Graf N, van Tinteren H, Bergeron C, Pein F, van den Heuvel-Eibrink MM, Sandstedt B, et al. Characteristics and outcome of stage II and III non-anaplastic Wilms’ tumour treated according to the SIOP trial and study 93–01. Eur J Cancer. 2012;48(17):3240–8.PubMedCrossRef
10.
go back to reference Guertl B, Ratschek M, Harms D, Jaenig U, Leuschner I, Poremba C, et al. Clonality and loss of heterozygosity of WT genes are early events in the pathogenesis of nephroblastomas. Hum Pathol. 2003;34(3):278–81.PubMedCrossRef Guertl B, Ratschek M, Harms D, Jaenig U, Leuschner I, Poremba C, et al. Clonality and loss of heterozygosity of WT genes are early events in the pathogenesis of nephroblastomas. Hum Pathol. 2003;34(3):278–81.PubMedCrossRef
11.
go back to reference Lahoti C, Thorner P, Malkin D, Yeger H. Immunohistochemical detection of p53 in Wilms’ tumors correlates with unfavorable outcome. Am J Pathol. 1996;148(5):1577–89.PubMedCentralPubMed Lahoti C, Thorner P, Malkin D, Yeger H. Immunohistochemical detection of p53 in Wilms’ tumors correlates with unfavorable outcome. Am J Pathol. 1996;148(5):1577–89.PubMedCentralPubMed
12.
go back to reference Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, et al. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet. 1994;7(1):91–7.PubMedCrossRef Bardeesy N, Falkoff D, Petruzzi MJ, Nowak N, Zabel B, Adam M, et al. Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet. 1994;7(1):91–7.PubMedCrossRef
13.
go back to reference Dome JS, Cotton CA, Perlman EJ, Breslow NE, Kalapurakal JA, Ritchey ML, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol. 2006;24(15):2352–8.PubMedCrossRef Dome JS, Cotton CA, Perlman EJ, Breslow NE, Kalapurakal JA, Ritchey ML, et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J Clin Oncol. 2006;24(15):2352–8.PubMedCrossRef
14.
go back to reference Faria P, Beckwith JB, Mishra K, Zuppan C, Weeks DA, Breslow N, et al. Focal versus diffuse anaplasia in Wilms tumor–new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am J Surg Pathol. 1996;20(8):909–20.PubMedCrossRef Faria P, Beckwith JB, Mishra K, Zuppan C, Weeks DA, Breslow N, et al. Focal versus diffuse anaplasia in Wilms tumor–new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am J Surg Pathol. 1996;20(8):909–20.PubMedCrossRef
15.
go back to reference Zirn B, Hartmann O, Samans B, Krause M, Wittmann S, Mertens F, et al. Expression profiling of Wilms tumors reveals new candidate genes for different clinical parameters. Int J Canc. 2006;118(8):1954–62.CrossRef Zirn B, Hartmann O, Samans B, Krause M, Wittmann S, Mertens F, et al. Expression profiling of Wilms tumors reveals new candidate genes for different clinical parameters. Int J Canc. 2006;118(8):1954–62.CrossRef
16.
go back to reference Li W, Kessler P, Yeger H, Alami J, Reeve AE, Heathcott R, et al. A gene expression signature for relapse of primary wilms tumors. Cancer Res. 2005;65(7):2592–601.PubMedCrossRef Li W, Kessler P, Yeger H, Alami J, Reeve AE, Heathcott R, et al. A gene expression signature for relapse of primary wilms tumors. Cancer Res. 2005;65(7):2592–601.PubMedCrossRef
17.
go back to reference Tao YF, Pang L, Du XJ, Sun LC, Hu SY, Lu J, et al. Differential mRNA expression levels of human histone-modifying enzymes in normal karyotype B cell pediatric acute lymphoblastic leukemia. Int J Mol Sci. 2013;14(2):3376–94.PubMedCentralPubMedCrossRef Tao YF, Pang L, Du XJ, Sun LC, Hu SY, Lu J, et al. Differential mRNA expression levels of human histone-modifying enzymes in normal karyotype B cell pediatric acute lymphoblastic leukemia. Int J Mol Sci. 2013;14(2):3376–94.PubMedCentralPubMedCrossRef
18.
go back to reference Yan-Fang T, Dong W, Li P, Wen-Li Z, Jun L, Na W, et al. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Cancer Cell Int. 2012;12(1):40.PubMedCentralPubMedCrossRef Yan-Fang T, Dong W, Li P, Wen-Li Z, Jun L, Na W, et al. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Cancer Cell Int. 2012;12(1):40.PubMedCentralPubMedCrossRef
19.
go back to reference Liu F, Kuo WP, Jenssen TK, Hovig E. Performance comparison of multiple microarray platforms for gene expression profiling. Methods Mol Biol. 2012;802:141–55.PubMedCrossRef Liu F, Kuo WP, Jenssen TK, Hovig E. Performance comparison of multiple microarray platforms for gene expression profiling. Methods Mol Biol. 2012;802:141–55.PubMedCrossRef
20.
go back to reference Maturu P, Overwijk WW, Hicks J, Ekmekcioglu S, Grimm EA, Huff V. Characterization of the inflammatory microenvironment and identification of potential therapeutic targets in wilms tumors. Transl Oncol. 2014;7(4):484–92.PubMedCentralPubMedCrossRef Maturu P, Overwijk WW, Hicks J, Ekmekcioglu S, Grimm EA, Huff V. Characterization of the inflammatory microenvironment and identification of potential therapeutic targets in wilms tumors. Transl Oncol. 2014;7(4):484–92.PubMedCentralPubMedCrossRef
21.
go back to reference Shukrun R, Pode Shakked N, Dekel B. Targeted therapy aimed at cancer stem cells: Wilms’ tumor as an example. Pediatr Nephrol. 2014;29(5):815–23. quiz 821.PubMedCrossRef Shukrun R, Pode Shakked N, Dekel B. Targeted therapy aimed at cancer stem cells: Wilms’ tumor as an example. Pediatr Nephrol. 2014;29(5):815–23. quiz 821.PubMedCrossRef
22.
go back to reference Hamilton TE, Green DM, Perlman EJ, Argani P, Grundy P, Ritchey ML, et al. Bilateral Wilms’ tumor with anaplasia: lessons from the National Wilms’ Tumor Study. J Pediatr Surg. 2006;41(10):1641–4.PubMedCrossRef Hamilton TE, Green DM, Perlman EJ, Argani P, Grundy P, Ritchey ML, et al. Bilateral Wilms’ tumor with anaplasia: lessons from the National Wilms’ Tumor Study. J Pediatr Surg. 2006;41(10):1641–4.PubMedCrossRef
23.
go back to reference Basta-Jovanovic G, Radojevic-Skodric S, Brasanac D, Djuricic S, Milasin J, Bogdanovic L, et al. Prognostic value of survivin expression in Wilms tumor. J BUON. 2012;17(1):168–73.PubMed Basta-Jovanovic G, Radojevic-Skodric S, Brasanac D, Djuricic S, Milasin J, Bogdanovic L, et al. Prognostic value of survivin expression in Wilms tumor. J BUON. 2012;17(1):168–73.PubMed
24.
go back to reference Tao YF, Lu J, Du XJ, Sun LC, Zhao X, Peng L, et al. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells. BMC Cancer. 2012;12:619.PubMedCentralPubMedCrossRef Tao YF, Lu J, Du XJ, Sun LC, Zhao X, Peng L, et al. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells. BMC Cancer. 2012;12:619.PubMedCentralPubMedCrossRef
25.
go back to reference Vu TH, Chuyen NV, Li T, Hoffman AR. Loss of imprinting of IGF2 sense and antisense transcripts in Wilms’ tumor. Cancer Res. 2003;63(8):1900–5.PubMed Vu TH, Chuyen NV, Li T, Hoffman AR. Loss of imprinting of IGF2 sense and antisense transcripts in Wilms’ tumor. Cancer Res. 2003;63(8):1900–5.PubMed
27.
go back to reference Sakatani T, Kaneda A, Iacobuzio-Donahue CA, Carter MG, de Boom WS, Okano H, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science. 2005;307(5717):1976–8.PubMedCrossRef Sakatani T, Kaneda A, Iacobuzio-Donahue CA, Carter MG, de Boom WS, Okano H, et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science. 2005;307(5717):1976–8.PubMedCrossRef
28.
go back to reference Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest. 2011;121(1):174–83.PubMedCentralPubMedCrossRef Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest. 2011;121(1):174–83.PubMedCentralPubMedCrossRef
29.
go back to reference Zumkeller W, Schwander J, Mitchell CD, Morrell DJ, Schofield PN, Preece MA. Insulin-like growth factor (IGF)-I, −II and IGF binding protein-2 (IGFBP-2) in the plasma of children with Wilms’ tumour. Eur J Cancer. 1993;29A(14):1973–7.PubMedCrossRef Zumkeller W, Schwander J, Mitchell CD, Morrell DJ, Schofield PN, Preece MA. Insulin-like growth factor (IGF)-I, −II and IGF binding protein-2 (IGFBP-2) in the plasma of children with Wilms’ tumour. Eur J Cancer. 1993;29A(14):1973–7.PubMedCrossRef
30.
go back to reference Boulle N, Baudin E, Gicquel C, Logie A, Bertherat J, Penfornis A, et al. Evaluation of plasma insulin-like growth factor binding protein-2 as a marker for adrenocortical tumors. Eur J Endocrinol. 2001;144(1):29–36.PubMedCrossRef Boulle N, Baudin E, Gicquel C, Logie A, Bertherat J, Penfornis A, et al. Evaluation of plasma insulin-like growth factor binding protein-2 as a marker for adrenocortical tumors. Eur J Endocrinol. 2001;144(1):29–36.PubMedCrossRef
31.
go back to reference Lee EJ, Mircean C, Shmulevich I, Wang H, Liu J, Niemisto A, et al. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol Cancer. 2005;4(1):7.PubMedCentralPubMedCrossRef Lee EJ, Mircean C, Shmulevich I, Wang H, Liu J, Niemisto A, et al. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol Cancer. 2005;4(1):7.PubMedCentralPubMedCrossRef
32.
go back to reference Zhu C, Chen Q, Xie Z, Ai J, Tong L, Ding J, et al. The role of histone deacetylase 7 (HDAC7) in cancer cell proliferation: regulation on c-Myc. J Mol Med (Berl). 2011;89(3):279–89.CrossRef Zhu C, Chen Q, Xie Z, Ai J, Tong L, Ding J, et al. The role of histone deacetylase 7 (HDAC7) in cancer cell proliferation: regulation on c-Myc. J Mol Med (Berl). 2011;89(3):279–89.CrossRef
33.
go back to reference Moreno DA, Scrideli CA, Cortez MA, de Paula QR, Valera ET, da Silva SV, et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010;150(6):665–73.PubMedCrossRef Moreno DA, Scrideli CA, Cortez MA, de Paula QR, Valera ET, da Silva SV, et al. Differential expression of HDAC3, HDAC7 and HDAC9 is associated with prognosis and survival in childhood acute lymphoblastic leukaemia. Br J Haematol. 2010;150(6):665–73.PubMedCrossRef
34.
go back to reference Ouaissi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, Lafontaine JS, et al. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol. 2008;15(8):2318–28.PubMedCrossRef Ouaissi M, Sielezneff I, Silvestre R, Sastre B, Bernard JP, Lafontaine JS, et al. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol. 2008;15(8):2318–28.PubMedCrossRef
35.
go back to reference Mottet D, Bellahcene A, Pirotte S, Waltregny D, Deroanne C, Lamour V, et al. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res. 2007;101(12):1237–46.PubMedCrossRef Mottet D, Bellahcene A, Pirotte S, Waltregny D, Deroanne C, Lamour V, et al. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res. 2007;101(12):1237–46.PubMedCrossRef
36.
go back to reference Stypula-Cyrus Y, Damania D, Kunte DP, Cruz MD, Subramanian H, Roy HK, et al. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure. PLoS One. 2013;8(5):e64600.PubMedCentralPubMedCrossRef Stypula-Cyrus Y, Damania D, Kunte DP, Cruz MD, Subramanian H, Roy HK, et al. HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure. PLoS One. 2013;8(5):e64600.PubMedCentralPubMedCrossRef
37.
go back to reference Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L, et al. HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics. 2012;7(12):1403–12.PubMedCentralPubMedCrossRef Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L, et al. HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics. 2012;7(12):1403–12.PubMedCentralPubMedCrossRef
38.
go back to reference Hsueh C, Wang H, Gonzalez-Crussi F, Lin JN, Hung IJ, Yang CP, et al. Infrequent p53 gene mutations and lack of p53 protein expression in clear cell sarcoma of the kidney: immunohistochemical study and mutation analysis of p53 in renal tumors of unfavorable prognosis. Mod Pathol. 2002;15(6):606–10.PubMedCrossRef Hsueh C, Wang H, Gonzalez-Crussi F, Lin JN, Hung IJ, Yang CP, et al. Infrequent p53 gene mutations and lack of p53 protein expression in clear cell sarcoma of the kidney: immunohistochemical study and mutation analysis of p53 in renal tumors of unfavorable prognosis. Mod Pathol. 2002;15(6):606–10.PubMedCrossRef
39.
go back to reference Gafanovich A, Ramu N, Krichevsky S, Pe’er J, Amir G, Ben-Yehuda D. Microsatellite instability and p53 mutations in pediatric secondary malignant neoplasms. Cancer. 1999;85(2):504–10.PubMedCrossRef Gafanovich A, Ramu N, Krichevsky S, Pe’er J, Amir G, Ben-Yehuda D. Microsatellite instability and p53 mutations in pediatric secondary malignant neoplasms. Cancer. 1999;85(2):504–10.PubMedCrossRef
40.
go back to reference Kusafuka T, Fukuzawa M, Oue T, Komoto Y, Yoneda A, Okada A. Mutation analysis of p53 gene in childhood malignant solid tumors. J Pediatr Surg. 1997;32(8):1175–80.PubMedCrossRef Kusafuka T, Fukuzawa M, Oue T, Komoto Y, Yoneda A, Okada A. Mutation analysis of p53 gene in childhood malignant solid tumors. J Pediatr Surg. 1997;32(8):1175–80.PubMedCrossRef
41.
go back to reference Takeuchi S, Bartram CR, Ludwig R, Royer-Pokora B, Schneider S, Imamura J, et al. Mutations of p53 in Wilms’ tumors. Mod Pathol. 1995;8(5):483–7.PubMed Takeuchi S, Bartram CR, Ludwig R, Royer-Pokora B, Schneider S, Imamura J, et al. Mutations of p53 in Wilms’ tumors. Mod Pathol. 1995;8(5):483–7.PubMed
42.
go back to reference Malkin D, Sexsmith E, Yeger H, Williams BR, Coppes MJ. Mutations of the p53 tumor suppressor gene occur infrequently in Wilms’ tumor. Cancer Res. 1994;54(8):2077–9.PubMed Malkin D, Sexsmith E, Yeger H, Williams BR, Coppes MJ. Mutations of the p53 tumor suppressor gene occur infrequently in Wilms’ tumor. Cancer Res. 1994;54(8):2077–9.PubMed
43.
go back to reference Beniers AJ, Efferth T, Fuzesi L, Granzen B, Mertens R, Jakse G. p53 expression in Wilms’ tumor: a possible role as prognostic factor. Int J Oncol. 2001;18(1):133–9.PubMed Beniers AJ, Efferth T, Fuzesi L, Granzen B, Mertens R, Jakse G. p53 expression in Wilms’ tumor: a possible role as prognostic factor. Int J Oncol. 2001;18(1):133–9.PubMed
44.
go back to reference Javelaud D, Mauviel A. Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol. 2004;36(7):1161–5.PubMedCrossRef Javelaud D, Mauviel A. Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. Int J Biochem Cell Biol. 2004;36(7):1161–5.PubMedCrossRef
45.
go back to reference Zhang L, Liu W, Qin Y, Wu R. Expression of TGF-beta1 in Wilms’ tumor was associated with invasiveness and disease progression: J Pediatr Urol. 2014;10(5)962-8. Zhang L, Liu W, Qin Y, Wu R. Expression of TGF-beta1 in Wilms’ tumor was associated with invasiveness and disease progression: J Pediatr Urol. 2014;10(5)962-8.
Metadata
Title
Analyzing the gene expression profile of anaplastic histology Wilms’ tumor with real-time polymerase chain reaction arrays
Authors
Jun Lu
Yan-Fang Tao
Zhi-Heng Li
Lan Cao
Shao-Yan Hu
Na-Na Wang
Xiao-Juan Du
Li-Chao Sun
Wen-Li Zhao
Pei-Fang Xiao
Fang Fang
Li-xiao Xu
Yan-Hong Li
Gang Li
He Zhao
Jian Ni
Jian Wang
Xing Feng
Jian Pan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2015
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-015-0197-x

Other articles of this Issue 1/2015

Cancer Cell International 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine