Skip to main content
Top
Published in: Endocrine 1/2017

01-07-2017 | Original Article

Circulating microRNA-1a is a biomarker of Graves’ disease patients with atrial fibrillation

Authors: Fang Wang, Sheng-jie Zhang, Xuan Yao, Dong-mei Tian, Ke-qin Zhang, Dun-min She, Fei-fan Guo, Qi-wei Zhai, Hao Ying, Ying Xue

Published in: Endocrine | Issue 1/2017

Login to get access

Abstract

Purpose

It has been increasingly suggested that specific microRNAs expression profiles in the circulation and atrial tissue are associated with the susceptibility to atrial fibrillation. Nonetheless, the role of circulating microRNAs in Graves’ disease patients with atrial fibrillation has not yet been well described. The objective of the study was to identify the role of circulating microRNAs as specific biomarkers for the diagnosis of Graves’ disease with atrial fibrillation.

Methods

The expression profiles of eight serum microRNAs, which are found to be critical in the pathogenesis of atrial fibrillation, were determined in patients with Graves’ disease with or without atrial fibrillation. MicroRNA expression analysis was performed by real-time PCR in normal control subjects (NC; n = 17), patients with Graves’ disease without atrial fibrillation (GD; n = 29), patients with Graves’ disease with atrial fibrillation (GD + AF; n = 14), and euthyroid patients with atrial fibrillation (AF; n = 22).

Results

Three of the eight serum microRNAs,i.e., miR-1a, miR-26a, and miR-133, had significantly different expression profiles among the four groups. Spearman’s correlation analysis showed that the relative expression level of miR-1a was positively correlated with free triiodothyronine (FT3) and free thyroxine (FT4), and negatively related to thyroid stimulating hormone. Spearman’s correlations analysis also revealed that the level of miR-1a was negatively correlated with a critical echocardiographic parameter (left atrial diameter), which was dramatically increased in GD + AF group compared to GD group. Furthermore, the receiver-operating characteristic curve analysis indicated that, among the eight microRNAs, miR-1a had the largest area under the receiver-operating characteristic curves not only for discriminating between individuals with and without Graves’ disease, but also for predicting the presence of atrial fibrillation in patients with Graves’ disease.

Conclusions

Our findings showed that the levels of serum miR-1a were significantly decreased in GD + AF group compared with GD group, suggesting that serum miR-1a might serve as a novel biomarker for diagnosis of atrial fibrillation in patients with Graves’ disease.
Appendix
Available only for authorised users
Literature
1.
go back to reference M. den Hoed, M. Eijgelsheim, T. Esko, B.J. Brundel, D.S. Peal, D.M. Evans, I.M. Nolte, A.V. Segre, H. Holm, R.E. Handsaker, H.J. Westra, T. Johnson, A. Isaacs, J. Yang, A. Lundby, J.H. Zhao, Y.J. Kim, M.J. Go, P. Almgren, M. Bochud, G. Boucher, M.C. Cornelis, D. Gudbjartsson, D. Hadley, P. van der Harst, C. Hayward, M. den Heijer, W. Igl, A.U. Jackson, Z. Kutalik, J. Luan, J.P. Kemp, K. Kristiansson, C. Ladenvall, M. Lorentzon, M.E. Montasser, O.T. Njajou, P.F. O’Reilly, S. Padmanabhan, B. St Pourcain, T. Rankinen, P. Salo, T. Tanaka, N.J. Timpson, V. Vitart, L. Waite, W. Wheeler, W. Zhang, H.H. Draisma, M.F. Feitosa, K.F. Kerr, P.A. Lind, E. Mihailov, N.C. Onland-Moret, C. Song, M.N. Weedon, W. Xie, L. Yengo, D. Absher, C.M. Albert, A. Alonso, D.E. Arking, P.I. de Bakker, B. Balkau, C. Barlassina, P. Benaglio, J.C. Bis, N. Bouatia-Naji, S. Brage, S.J. Chanock, P.S. Chines, M. Chung, D. Darbar, C. Dina, M. Dorr, P. Elliott, S.B. Felix, K. Fischer, C. Fuchsberger, E.J. de Geus, P. Goyette, V. Gudnason, T.B. Harris, A.L. Hartikainen, A.S. Havulinna, S.R. Heckbert, A.A. Hicks, A. Hofman, S. Holewijn, F. Hoogstra-Berends, J.J. Hottenga, M.K. Jensen, A. Johansson, J. Junttila, S. Kaab, B. Kanon, S. Ketkar, K.T. Khaw, J.W. Knowles, A.S. Kooner, J.A. Kors, M. Kumari, L. Milani, P. Laiho, E.G. Lakatta, C. Langenberg, M. Leusink, Y. Liu, R.N. Luben, K.L. Lunetta, S.N. Lynch, M.R. Markus, P. Marques-Vidal, I. Mateo Leach, W.L. McArdle, S.A. McCarroll, S.E. Medland, K.A. Miller, G.W. Montgomery, A.C. Morrison, M. Muller-Nurasyid, P. Navarro, M. Nelis, J.R. O’Connell, C.J. O’Donnell, K.K. Ong, A.B. Newman, A. Peters, O. Polasek, A. Pouta, P.P. Pramstaller, B.M. Psaty, D.C. Rao, S.M. Ring, E.J. Rossin, D. Rudan, S. Sanna, R.A. Scott, J.S. Sehmi, S. Sharp, J.T. Shin, A.B. Singleton, A.V. Smith, N. Soranzo, T.D. Spector, C. Stewart, H.M. Stringham, K.V. Tarasov, A.G. Uitterlinden, L. Vandenput, S.J. Hwang, J.B. Whitfield, C. Wijmenga, S.H. Wild, G. Willemsen, J.F. Wilson, J.C. Witteman, A. Wong, Q. Wong, Y. Jamshidi, P. Zitting, J.M. Boer, D.I. Boomsma, I.B. Borecki, C.M. van Duijn, U. Ekelund, N.G. Forouhi, P. Froguel, A. Hingorani, E. Ingelsson, M. Kivimaki, R.A. Kronmal, D. Kuh, L. Lind, N.G. Martin, B.A. Oostra, N.L. Pedersen, T. Quertermous, J.I. Rotter, Y.T. van der Schouw, W.M. Verschuren, M. Walker, D. Albanes, D.O. Arnar, T.L. Assimes, S. Bandinelli, M. Boehnke, R.A. de Boer, C. Bouchard, W.L. Caulfield, J.C. Chambers, G. Curhan, D. Cusi, J. Eriksson, L. Ferrucci, W.H. van Gilst, N. Glorioso, J. de Graaf, L. Groop, U. Gyllensten, W.C. Hsueh, F.B. Hu, H.V. Huikuri, D.J. Hunter, C. Iribarren, B. Isomaa, M.R. Jarvelin, A. Jula, M. Kahonen, L.A. Kiemeney, M.M. van der Klauw, J.S. Kooner, P. Kraft, L. Iacoviello, T. Lehtimaki, M.L. Lokki, B.D. Mitchell, G. Navis, M.S. Nieminen, C. Ohlsson, N.R. Poulter, L. Qi, O.T. Raitakari, E.B. Rimm, J.D. Rioux, F. Rizzi, I. Rudan, V. Salomaa, P.S. Sever, D.C. Shields, A.R. Shuldiner, J. Sinisalo, A.V. Stanton, R.P. Stolk, D.P. Strachan, J.C. Tardif, U. Thorsteinsdottir, J. Tuomilehto, D.J. van Veldhuisen, J. Virtamo, J. Viikari, P. Vollenweider, G. Waeber, E. Widen, Y.S. Cho, J.V. Olsen, P.M. Visscher, C. Willer, L. Franke, B.C. Global, C.A. Consortium, J. Erdmann, J.R. Thompson, P.G. Consortium, A. Pfeufer, Q.G. Consortium, N. Sotoodehnia, Q.-I. Consortium, C. Newton-Cheh, C.-A. Consortium, P.T. Ellinor, B.H. Stricker, A. Metspalu, M. Perola, J.S. Beckmann, G.D. Smith, K. Stefansson, N.J. Wareham, P.B. Munroe, O.C. Sibon, D.J. Milan, H. Snieder, N.J. Samani, R.J. Loos, Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45(6), 621–631 (2013)CrossRef M. den Hoed, M. Eijgelsheim, T. Esko, B.J. Brundel, D.S. Peal, D.M. Evans, I.M. Nolte, A.V. Segre, H. Holm, R.E. Handsaker, H.J. Westra, T. Johnson, A. Isaacs, J. Yang, A. Lundby, J.H. Zhao, Y.J. Kim, M.J. Go, P. Almgren, M. Bochud, G. Boucher, M.C. Cornelis, D. Gudbjartsson, D. Hadley, P. van der Harst, C. Hayward, M. den Heijer, W. Igl, A.U. Jackson, Z. Kutalik, J. Luan, J.P. Kemp, K. Kristiansson, C. Ladenvall, M. Lorentzon, M.E. Montasser, O.T. Njajou, P.F. O’Reilly, S. Padmanabhan, B. St Pourcain, T. Rankinen, P. Salo, T. Tanaka, N.J. Timpson, V. Vitart, L. Waite, W. Wheeler, W. Zhang, H.H. Draisma, M.F. Feitosa, K.F. Kerr, P.A. Lind, E. Mihailov, N.C. Onland-Moret, C. Song, M.N. Weedon, W. Xie, L. Yengo, D. Absher, C.M. Albert, A. Alonso, D.E. Arking, P.I. de Bakker, B. Balkau, C. Barlassina, P. Benaglio, J.C. Bis, N. Bouatia-Naji, S. Brage, S.J. Chanock, P.S. Chines, M. Chung, D. Darbar, C. Dina, M. Dorr, P. Elliott, S.B. Felix, K. Fischer, C. Fuchsberger, E.J. de Geus, P. Goyette, V. Gudnason, T.B. Harris, A.L. Hartikainen, A.S. Havulinna, S.R. Heckbert, A.A. Hicks, A. Hofman, S. Holewijn, F. Hoogstra-Berends, J.J. Hottenga, M.K. Jensen, A. Johansson, J. Junttila, S. Kaab, B. Kanon, S. Ketkar, K.T. Khaw, J.W. Knowles, A.S. Kooner, J.A. Kors, M. Kumari, L. Milani, P. Laiho, E.G. Lakatta, C. Langenberg, M. Leusink, Y. Liu, R.N. Luben, K.L. Lunetta, S.N. Lynch, M.R. Markus, P. Marques-Vidal, I. Mateo Leach, W.L. McArdle, S.A. McCarroll, S.E. Medland, K.A. Miller, G.W. Montgomery, A.C. Morrison, M. Muller-Nurasyid, P. Navarro, M. Nelis, J.R. O’Connell, C.J. O’Donnell, K.K. Ong, A.B. Newman, A. Peters, O. Polasek, A. Pouta, P.P. Pramstaller, B.M. Psaty, D.C. Rao, S.M. Ring, E.J. Rossin, D. Rudan, S. Sanna, R.A. Scott, J.S. Sehmi, S. Sharp, J.T. Shin, A.B. Singleton, A.V. Smith, N. Soranzo, T.D. Spector, C. Stewart, H.M. Stringham, K.V. Tarasov, A.G. Uitterlinden, L. Vandenput, S.J. Hwang, J.B. Whitfield, C. Wijmenga, S.H. Wild, G. Willemsen, J.F. Wilson, J.C. Witteman, A. Wong, Q. Wong, Y. Jamshidi, P. Zitting, J.M. Boer, D.I. Boomsma, I.B. Borecki, C.M. van Duijn, U. Ekelund, N.G. Forouhi, P. Froguel, A. Hingorani, E. Ingelsson, M. Kivimaki, R.A. Kronmal, D. Kuh, L. Lind, N.G. Martin, B.A. Oostra, N.L. Pedersen, T. Quertermous, J.I. Rotter, Y.T. van der Schouw, W.M. Verschuren, M. Walker, D. Albanes, D.O. Arnar, T.L. Assimes, S. Bandinelli, M. Boehnke, R.A. de Boer, C. Bouchard, W.L. Caulfield, J.C. Chambers, G. Curhan, D. Cusi, J. Eriksson, L. Ferrucci, W.H. van Gilst, N. Glorioso, J. de Graaf, L. Groop, U. Gyllensten, W.C. Hsueh, F.B. Hu, H.V. Huikuri, D.J. Hunter, C. Iribarren, B. Isomaa, M.R. Jarvelin, A. Jula, M. Kahonen, L.A. Kiemeney, M.M. van der Klauw, J.S. Kooner, P. Kraft, L. Iacoviello, T. Lehtimaki, M.L. Lokki, B.D. Mitchell, G. Navis, M.S. Nieminen, C. Ohlsson, N.R. Poulter, L. Qi, O.T. Raitakari, E.B. Rimm, J.D. Rioux, F. Rizzi, I. Rudan, V. Salomaa, P.S. Sever, D.C. Shields, A.R. Shuldiner, J. Sinisalo, A.V. Stanton, R.P. Stolk, D.P. Strachan, J.C. Tardif, U. Thorsteinsdottir, J. Tuomilehto, D.J. van Veldhuisen, J. Virtamo, J. Viikari, P. Vollenweider, G. Waeber, E. Widen, Y.S. Cho, J.V. Olsen, P.M. Visscher, C. Willer, L. Franke, B.C. Global, C.A. Consortium, J. Erdmann, J.R. Thompson, P.G. Consortium, A. Pfeufer, Q.G. Consortium, N. Sotoodehnia, Q.-I. Consortium, C. Newton-Cheh, C.-A. Consortium, P.T. Ellinor, B.H. Stricker, A. Metspalu, M. Perola, J.S. Beckmann, G.D. Smith, K. Stefansson, N.J. Wareham, P.B. Munroe, O.C. Sibon, D.J. Milan, H. Snieder, N.J. Samani, R.J. Loos, Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. Nat. Genet. 45(6), 621–631 (2013)CrossRef
2.
go back to reference C.T. Sawin, A. Geller, P.A. Wolf, A.J. Belanger, E. Baker, P. Bacharach, P.W. Wilson, E.J. Benjamin, R.B. D’Agostino, Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N. Engl. J. Med. 331(19), 1249–1252 (1994)CrossRefPubMed C.T. Sawin, A. Geller, P.A. Wolf, A.J. Belanger, E. Baker, P. Bacharach, P.W. Wilson, E.J. Benjamin, R.B. D’Agostino, Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N. Engl. J. Med. 331(19), 1249–1252 (1994)CrossRefPubMed
3.
go back to reference J. Heeringa, E.H. Hoogendoorn, W.M. van der Deure, A. Hofman, R.P. Peeters, W.C. Hop, M. den Heijer, T.J. Visser, J.C. Witteman, High-normal thyroid function and risk of atrial fibrillation: the Rotterdam study. Arch. Intern. Med. 168(20), 2219–2224 (2008)CrossRefPubMed J. Heeringa, E.H. Hoogendoorn, W.M. van der Deure, A. Hofman, R.P. Peeters, W.C. Hop, M. den Heijer, T.J. Visser, J.C. Witteman, High-normal thyroid function and risk of atrial fibrillation: the Rotterdam study. Arch. Intern. Med. 168(20), 2219–2224 (2008)CrossRefPubMed
4.
go back to reference M.D. Gammage, J.V. Parle, R.L. Holder, L.M. Roberts, F.D. Hobbs, S. Wilson, M.C. Sheppard, J.A. Franklyn, Association between serum free thyroxine concentration and atrial fibrillation. Arch. Intern. Med. 167(9), 928–934 (2007)CrossRefPubMed M.D. Gammage, J.V. Parle, R.L. Holder, L.M. Roberts, F.D. Hobbs, S. Wilson, M.C. Sheppard, J.A. Franklyn, Association between serum free thyroxine concentration and atrial fibrillation. Arch. Intern. Med. 167(9), 928–934 (2007)CrossRefPubMed
5.
go back to reference X. Luo, B. Yang, S. Nattel, MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat. Rev. Cardiol. 12(2), 80–90 (2015)CrossRefPubMed X. Luo, B. Yang, S. Nattel, MicroRNAs and atrial fibrillation: mechanisms and translational potential. Nat. Rev. Cardiol. 12(2), 80–90 (2015)CrossRefPubMed
7.
go back to reference R. Liu, X. Ma, L. Xu, D. Wang, X. Jiang, W. Zhu, B. Cui, G. Ning, D. Lin, S. Wang, Differential microRNA expression in peripheral blood mononuclear cells from Graves’ disease patients. J. Clin. Endocrinol. Metab. 97(6), E968–E972 (2012)CrossRefPubMed R. Liu, X. Ma, L. Xu, D. Wang, X. Jiang, W. Zhu, B. Cui, G. Ning, D. Lin, S. Wang, Differential microRNA expression in peripheral blood mononuclear cells from Graves’ disease patients. J. Clin. Endocrinol. Metab. 97(6), E968–E972 (2012)CrossRefPubMed
8.
go back to reference R.M. O’Connell, D.S. Rao, A.A. Chaudhuri, D. Baltimore, Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10(2), 111–122 (2010)CrossRefPubMed R.M. O’Connell, D.S. Rao, A.A. Chaudhuri, D. Baltimore, Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 10(2), 111–122 (2010)CrossRefPubMed
9.
go back to reference M. Hulsmans, P. Sinnaeve, B. Van der Schueren, C. Mathieu, S. Janssens, P. Holvoet, Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. J. Clin. Endocrinol. Metab. 97(7), E1213–E1218 (2012)CrossRefPubMed M. Hulsmans, P. Sinnaeve, B. Van der Schueren, C. Mathieu, S. Janssens, P. Holvoet, Decreased miR-181a expression in monocytes of obese patients is associated with the occurrence of metabolic syndrome and coronary artery disease. J. Clin. Endocrinol. Metab. 97(7), E1213–E1218 (2012)CrossRefPubMed
10.
go back to reference D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)PubMed D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)PubMed
11.
go back to reference S. Fichtlscherer, S. De Rosa, H. Fox, T. Schwietz, A. Fischer, C. Liebetrau, M. Weber, C.W. Hamm, T. Roxe, M. Muller-Ardogan, A. Bonauer, A.M. Zeiher, S. Dimmeler, Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107(5), 677–684 (2010)CrossRefPubMed S. Fichtlscherer, S. De Rosa, H. Fox, T. Schwietz, A. Fischer, C. Liebetrau, M. Weber, C.W. Hamm, T. Roxe, M. Muller-Ardogan, A. Bonauer, A.M. Zeiher, S. Dimmeler, Circulating microRNAs in patients with coronary artery disease. Circ. Res. 107(5), 677–684 (2010)CrossRefPubMed
12.
go back to reference M. Karakas, C. Schulte, S. Appelbaum, F. Ojeda, K.J. Lackner, T. Munzel, R.B. Schnabel, S. Blankenberg, T. Zeller Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur. Heart. J. 38(7), 516–523 (2017) M. Karakas, C. Schulte, S. Appelbaum, F. Ojeda, K.J. Lackner, T. Munzel, R.B. Schnabel, S. Blankenberg, T. Zeller Circulating microRNAs strongly predict cardiovascular death in patients with coronary artery disease-results from the large AtheroGene study. Eur. Heart. J. 38(7), 516–523 (2017)
13.
go back to reference M.A. Cortez, C. Bueso-Ramos, J. Ferdin, G. Lopez-Berestein, A.K. Sood, G.A. Calin, MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8(8), 467–477 (2011)PubMedCentralCrossRefPubMed M.A. Cortez, C. Bueso-Ramos, J. Ferdin, G. Lopez-Berestein, A.K. Sood, G.A. Calin, MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8(8), 467–477 (2011)PubMedCentralCrossRefPubMed
14.
go back to reference P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O’Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105(30), 10513–10518 (2008)PubMedCentralCrossRefPubMed P.S. Mitchell, R.K. Parkin, E.M. Kroh, B.R. Fritz, S.K. Wyman, E.L. Pogosova-Agadjanyan, A. Peterson, J. Noteboom, K.C. O’Briant, A. Allen, D.W. Lin, N. Urban, C.W. Drescher, B.S. Knudsen, D.L. Stirewalt, R. Gentleman, R.L. Vessella, P.S. Nelson, D.B. Martin, M. Tewari, Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U. S. A. 105(30), 10513–10518 (2008)PubMedCentralCrossRefPubMed
15.
go back to reference Y. Zhao, J.F. Ransom, A. Li, V. Vedantham, M. von Drehle, A.N. Muth, T. Tsuchihashi, M.T. McManus, R.J. Schwartz, D. Srivastava, Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2), 303–317 (2007)CrossRefPubMed Y. Zhao, J.F. Ransom, A. Li, V. Vedantham, M. von Drehle, A.N. Muth, T. Tsuchihashi, M.T. McManus, R.J. Schwartz, D. Srivastava, Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129(2), 303–317 (2007)CrossRefPubMed
16.
go back to reference O. Adam, B. Lohfelm, T. Thum, S.K. Gupta, S.L. Puhl, H.J. Schafers, M. Bohm, U. Laufs, Role of miR-21 in the pathogenesis of atrial fibrosis. Basic. Res. Cardiol. 107(5), 278 (2012)CrossRefPubMed O. Adam, B. Lohfelm, T. Thum, S.K. Gupta, S.L. Puhl, H.J. Schafers, M. Bohm, U. Laufs, Role of miR-21 in the pathogenesis of atrial fibrosis. Basic. Res. Cardiol. 107(5), 278 (2012)CrossRefPubMed
17.
go back to reference Z. Girmatsion, P. Biliczki, A. Bonauer, G. Wimmer-Greinecker, M. Scherer, A. Moritz, A. Bukowska, A. Goette, S. Nattel, S.H. Hohnloser, J.R. Ehrlich, Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart. Rhythm. 6(12), 1802–1809 (2009)CrossRefPubMed Z. Girmatsion, P. Biliczki, A. Bonauer, G. Wimmer-Greinecker, M. Scherer, A. Moritz, A. Bukowska, A. Goette, S. Nattel, S.H. Hohnloser, J.R. Ehrlich, Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation. Heart. Rhythm. 6(12), 1802–1809 (2009)CrossRefPubMed
18.
go back to reference X. Luo, Z. Pan, H. Shan, J. Xiao, X. Sun, N. Wang, H. Lin, L. Xiao, A. Maguy, X.Y. Qi, Y. Li, X. Gao, D. Dong, Y. Zhang, Y. Bai, J. Ai, L. Sun, H. Lu, X.Y. Luo, Z. Wang, Y. Lu, B. Yang, S. Nattel, MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest. 123(5), 1939–1951 (2013)PubMedCentralCrossRefPubMed X. Luo, Z. Pan, H. Shan, J. Xiao, X. Sun, N. Wang, H. Lin, L. Xiao, A. Maguy, X.Y. Qi, Y. Li, X. Gao, D. Dong, Y. Zhang, Y. Bai, J. Ai, L. Sun, H. Lu, X.Y. Luo, Z. Wang, Y. Lu, B. Yang, S. Nattel, MicroRNA-26 governs profibrillatory inward-rectifier potassium current changes in atrial fibrillation. J. Clin. Invest. 123(5), 1939–1951 (2013)PubMedCentralCrossRefPubMed
19.
go back to reference K. Dawson, R. Wakili, B. Ordog, S. Clauss, Y. Chen, Y. Iwasaki, N. Voigt, X.Y. Qi, M.F. Sinner, D. Dobrev, S. Kaab, S. Nattel, MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation. 127(14), 1466–1475 (2013). 1475e1461-1428CrossRefPubMed K. Dawson, R. Wakili, B. Ordog, S. Clauss, Y. Chen, Y. Iwasaki, N. Voigt, X.Y. Qi, M.F. Sinner, D. Dobrev, S. Kaab, S. Nattel, MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation. 127(14), 1466–1475 (2013). 1475e1461-1428CrossRefPubMed
20.
go back to reference R.F. Duisters, A.J. Tijsen, B. Schroen, J.J. Leenders, V. Lentink, I. van der Made, V. Herias, R.E. van Leeuwen, M.W. Schellings, P. Barenbrug, J.G. Maessen, S. Heymans, Y.M. Pinto, E.E. Creemers, miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104(2), 170–178 (2009). 176p following 178CrossRefPubMed R.F. Duisters, A.J. Tijsen, B. Schroen, J.J. Leenders, V. Lentink, I. van der Made, V. Herias, R.E. van Leeuwen, M.W. Schellings, P. Barenbrug, J.G. Maessen, S. Heymans, Y.M. Pinto, E.E. Creemers, miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circ. Res. 104(2), 170–178 (2009). 176p following 178CrossRefPubMed
21.
go back to reference N. Cooley, M.J. Cowley, R.C. Lin, S. Marasco, C. Wong, D.M. Kaye, A.M. Dart, E.A. Woodcock, Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol. Genomics. 44(3), 211–219 (2012)CrossRefPubMed N. Cooley, M.J. Cowley, R.C. Lin, S. Marasco, C. Wong, D.M. Kaye, A.M. Dart, E.A. Woodcock, Influence of atrial fibrillation on microRNA expression profiles in left and right atria from patients with valvular heart disease. Physiol. Genomics. 44(3), 211–219 (2012)CrossRefPubMed
22.
go back to reference Y. Lu, Y. Zhang, N. Wang, Z. Pan, X. Gao, F. Zhang, Y. Zhang, H. Shan, X. Luo, Y. Bai, L. Sun, W. Song, C. Xu, Z. Wang, B. Yang, MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 122(23), 2378–2387 (2010)CrossRefPubMed Y. Lu, Y. Zhang, N. Wang, Z. Pan, X. Gao, F. Zhang, Y. Zhang, H. Shan, X. Luo, Y. Bai, L. Sun, W. Song, C. Xu, Z. Wang, B. Yang, MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation. 122(23), 2378–2387 (2010)CrossRefPubMed
23.
go back to reference T.Y. Ling, X.L. Wang, Q. Chai, T.W. Lau, C.M. Koestler, S.J. Park, R.C. Daly, K.L. Greason, J. Jen, L.Q. Wu, W.F. Shen, W.K. Shen, Y.M. Cha, H.C. Lee, Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart. Rhythm. 10(7), 1001–1009 (2013)PubMedCentralCrossRefPubMed T.Y. Ling, X.L. Wang, Q. Chai, T.W. Lau, C.M. Koestler, S.J. Park, R.C. Daly, K.L. Greason, J. Jen, L.Q. Wu, W.F. Shen, W.K. Shen, Y.M. Cha, H.C. Lee, Regulation of the SK3 channel by microRNA-499--potential role in atrial fibrillation. Heart. Rhythm. 10(7), 1001–1009 (2013)PubMedCentralCrossRefPubMed
24.
go back to reference C. Bernecker, L. Lenz, M.S. Ostapczuk, S. Schinner, H. Willenberg, M. Ehlers, S. Vordenbaumen, J. Feldkamp, M. Schott, MicroRNAs miR-146a1, miR-155_2, and miR-200a1 are regulated in autoimmune thyroid diseases. Thyroid. 22(12), 1294–1295 (2012)CrossRefPubMed C. Bernecker, L. Lenz, M.S. Ostapczuk, S. Schinner, H. Willenberg, M. Ehlers, S. Vordenbaumen, J. Feldkamp, M. Schott, MicroRNAs miR-146a1, miR-155_2, and miR-200a1 are regulated in autoimmune thyroid diseases. Thyroid. 22(12), 1294–1295 (2012)CrossRefPubMed
25.
go back to reference European Heart Rhythm, A., European Association for Cardio-Thoracic, S., A.J. Camm, P. Kirchhof, G.Y. Lip, U. Schotten, I. Savelieva, S. Ernst, I.C. Van Gelder, N. Al-Attar, G. Hindricks, B. Prendergast, H. Heidbuchel, O. Alfieri, A. Angelini, D. Atar, P. Colonna, R. De Caterina, J. De Sutter, A. Goette, B. Gorenek, M. Heldal, S.H. Hohloser, P. Kolh, J.Y. Le Heuzey, P. Ponikowski, F.H. Rutten, Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart. J. 31(19), 2369–2429 (2010)CrossRef European Heart Rhythm, A., European Association for Cardio-Thoracic, S., A.J. Camm, P. Kirchhof, G.Y. Lip, U. Schotten, I. Savelieva, S. Ernst, I.C. Van Gelder, N. Al-Attar, G. Hindricks, B. Prendergast, H. Heidbuchel, O. Alfieri, A. Angelini, D. Atar, P. Colonna, R. De Caterina, J. De Sutter, A. Goette, B. Gorenek, M. Heldal, S.H. Hohloser, P. Kolh, J.Y. Le Heuzey, P. Ponikowski, F.H. Rutten, Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart. J. 31(19), 2369–2429 (2010)CrossRef
26.
go back to reference N. Hakimzadeh, A.Y. Nossent, A.M. van der Laan, S.H. Schirmer, M.W. de Ronde, S.J. Pinto-Sietsma, N. van Royen, P.H. Quax, I.E. Hoefer, J.J. Piek, Circulating MicroRNAs Characterizing Patients with Insufficient Coronary Collateral Artery Function. PLoS ONE 10(9), e0137035 (2015)PubMedCentralCrossRefPubMed N. Hakimzadeh, A.Y. Nossent, A.M. van der Laan, S.H. Schirmer, M.W. de Ronde, S.J. Pinto-Sietsma, N. van Royen, P.H. Quax, I.E. Hoefer, J.J. Piek, Circulating MicroRNAs Characterizing Patients with Insufficient Coronary Collateral Artery Function. PLoS ONE 10(9), e0137035 (2015)PubMedCentralCrossRefPubMed
27.
go back to reference N.S. Lai, D.G. Wu, X.G. Fang, Y.C. Lin, S.S. Chen, Z.B. Li, S.S. Xu, Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br. J. Cancer. 112(7), 1241–1246 (2015)PubMedCentralCrossRefPubMed N.S. Lai, D.G. Wu, X.G. Fang, Y.C. Lin, S.S. Chen, Z.B. Li, S.S. Xu, Serum microRNA-210 as a potential noninvasive biomarker for the diagnosis and prognosis of glioma. Br. J. Cancer. 112(7), 1241–1246 (2015)PubMedCentralCrossRefPubMed
28.
go back to reference M. Xiang, Y. Zeng, R. Yang, H. Xu, Z. Chen, J. Zhong, H. Xie, Y. Xu, X. Zeng, U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 454(1), 210–214 (2014)CrossRefPubMed M. Xiang, Y. Zeng, R. Yang, H. Xu, Z. Chen, J. Zhong, H. Xie, Y. Xu, X. Zeng, U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem. Biophys. Res. Commun. 454(1), 210–214 (2014)CrossRefPubMed
29.
go back to reference X. Zhang, S. Shao, H. Geng, Y. Yu, C. Wang, Z. Liu, C. Yu, X. Jiang, Y. Deng, L. Gao, J. Zhao, Expression profiles of six circulating microRNAs critical to atherosclerosis in patients with subclinical hypothyroidism: a clinical study. J. Clin. Endocrinol. Metab. 99(5), E766–E774 (2014)CrossRefPubMed X. Zhang, S. Shao, H. Geng, Y. Yu, C. Wang, Z. Liu, C. Yu, X. Jiang, Y. Deng, L. Gao, J. Zhao, Expression profiles of six circulating microRNAs critical to atherosclerosis in patients with subclinical hypothyroidism: a clinical study. J. Clin. Endocrinol. Metab. 99(5), E766–E774 (2014)CrossRefPubMed
30.
go back to reference H. Wang, W. Peng, X. Ouyang, W. Li, Y. Dai, Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res. 160(3), 198–206 (2012)CrossRefPubMed H. Wang, W. Peng, X. Ouyang, W. Li, Y. Dai, Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Transl. Res. 160(3), 198–206 (2012)CrossRefPubMed
31.
go back to reference Y. Shao, H. Ren, C. Lv, X. Ma, C. Wu, Q. Wang, Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine 55(1), 130–138 (2017)CrossRefPubMed Y. Shao, H. Ren, C. Lv, X. Ma, C. Wu, Q. Wang, Changes of serum Mir-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine 55(1), 130–138 (2017)CrossRefPubMed
32.
go back to reference L. Jiang, J. Huang, Y. Chen, Y. Yang, R. Li, Y. Li, X. Chen, D. Yang, Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine 53(1), 280–290 (2016)CrossRefPubMed L. Jiang, J. Huang, Y. Chen, Y. Yang, R. Li, Y. Li, X. Chen, D. Yang, Identification of several circulating microRNAs from a genome-wide circulating microRNA expression profile as potential biomarkers for impaired glucose metabolism in polycystic ovarian syndrome. Endocrine 53(1), 280–290 (2016)CrossRefPubMed
33.
go back to reference M. Pelloni, G. Coltrinari, D. Paoli, F. Pallotti, F. Lombardo, A. Lenzi, L. Gandini Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients. Endocrine (2016). [Epub ahead of print]. doi:10.1007/s12020-016-1150-z CrossRefPubMed M. Pelloni, G. Coltrinari, D. Paoli, F. Pallotti, F. Lombardo, A. Lenzi, L. Gandini Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients. Endocrine (2016). [Epub ahead of print]. doi:10.​1007/​s12020-016-1150-z CrossRefPubMed
34.
go back to reference L. Shen, F. Huang, L. Ye, W. Zhu, X. Zhang, S. Wang, W. Wang, G. Ning, Circulating microRNA predicts insensitivity to glucocorticoid therapy in Graves’ ophthalmopathy. Endocrine 49(2), 445–456 (2015)CrossRefPubMed L. Shen, F. Huang, L. Ye, W. Zhu, X. Zhang, S. Wang, W. Wang, G. Ning, Circulating microRNA predicts insensitivity to glucocorticoid therapy in Graves’ ophthalmopathy. Endocrine 49(2), 445–456 (2015)CrossRefPubMed
35.
go back to reference D.D. McManus, K. Tanriverdi, H. Lin, N. Esa, M. Kinno, D. Mandapati, S. Tam, O.N. Okike, P.T. Ellinor, J.F. Keaney Jr., J.K. Donahue, E.J. Benjamin, J.E. Freedman, Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart. Rhythm. 12(1), 3–10 (2015)CrossRefPubMed D.D. McManus, K. Tanriverdi, H. Lin, N. Esa, M. Kinno, D. Mandapati, S. Tam, O.N. Okike, P.T. Ellinor, J.F. Keaney Jr., J.K. Donahue, E.J. Benjamin, J.E. Freedman, Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation (the miRhythm study). Heart. Rhythm. 12(1), 3–10 (2015)CrossRefPubMed
36.
go back to reference Z. Liu, C. Zhou, Y. Liu, S. Wang, P. Ye, X. Miao, J. Xia, The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS ONE 7(9), e44906 (2012)PubMedCentralCrossRefPubMed Z. Liu, C. Zhou, Y. Liu, S. Wang, P. Ye, X. Miao, J. Xia, The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS ONE 7(9), e44906 (2012)PubMedCentralCrossRefPubMed
37.
go back to reference Y. Goren, E. Meiri, C. Hogan, H. Mitchell, D. Lebanony, N. Salman, J.E. Schliamser, O. Amir, Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am. J. Cardiol. 113(6), 976–981 (2014)CrossRefPubMed Y. Goren, E. Meiri, C. Hogan, H. Mitchell, D. Lebanony, N. Salman, J.E. Schliamser, O. Amir, Relation of reduced expression of MiR-150 in platelets to atrial fibrillation in patients with chronic systolic heart failure. Am. J. Cardiol. 113(6), 976–981 (2014)CrossRefPubMed
38.
go back to reference T. Liu, S. Zhong, F. Rao, Y. Xue, Z. Qi, S. Wu, Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients. Europace. 18(1), 92–99 (2016)CrossRefPubMed T. Liu, S. Zhong, F. Rao, Y. Xue, Z. Qi, S. Wu, Catheter ablation restores decreased plasma miR-409-3p and miR-432 in atrial fibrillation patients. Europace. 18(1), 92–99 (2016)CrossRefPubMed
39.
go back to reference S. Fazio, E.A. Palmieri, G. Lombardi, B. Biondi, Effects of thyroid hormone on the cardiovascular system. Recent. Prog. Horm. Res. 59, 31–50 (2004)CrossRefPubMed S. Fazio, E.A. Palmieri, G. Lombardi, B. Biondi, Effects of thyroid hormone on the cardiovascular system. Recent. Prog. Horm. Res. 59, 31–50 (2004)CrossRefPubMed
40.
go back to reference W.H. Dillmann, Biochemical basis of thyroid hormone action in the heart. Am. J. Med. 88(6), 626–630 (1990)CrossRefPubMed W.H. Dillmann, Biochemical basis of thyroid hormone action in the heart. Am. J. Med. 88(6), 626–630 (1990)CrossRefPubMed
41.
go back to reference M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, T. Tuschl, Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12(9), 735–739 (2002)CrossRefPubMed M. Lagos-Quintana, R. Rauhut, A. Yalcin, J. Meyer, W. Lendeckel, T. Tuschl, Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12(9), 735–739 (2002)CrossRefPubMed
42.
go back to reference P.K. Rao, Y. Toyama, H.R. Chiang, S. Gupta, M. Bauer, R. Medvid, F. Reinhardt, R. Liao, M. Krieger, R. Jaenisch, H.F. Lodish, R. Blelloch, Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105(6), 585–594 (2009)PubMedCentralCrossRefPubMed P.K. Rao, Y. Toyama, H.R. Chiang, S. Gupta, M. Bauer, R. Medvid, F. Reinhardt, R. Liao, M. Krieger, R. Jaenisch, H.F. Lodish, R. Blelloch, Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure. Circ. Res. 105(6), 585–594 (2009)PubMedCentralCrossRefPubMed
43.
go back to reference D. Terentyev, A.E. Belevych, R. Terentyeva, M.M. Martin, G.E. Malana, D.E. Kuhn, M. Abdellatif, D.S. Feldman, T.S. Elton, S. Gyorke, miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104(4), 514–521 (2009)PubMedCentralCrossRefPubMed D. Terentyev, A.E. Belevych, R. Terentyeva, M.M. Martin, G.E. Malana, D.E. Kuhn, M. Abdellatif, D.S. Feldman, T.S. Elton, S. Gyorke, miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104(4), 514–521 (2009)PubMedCentralCrossRefPubMed
44.
go back to reference Y. Lu, S. Hou, D. Huang, X. Luo, J. Zhang, J. Chen, W. Xu, Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients. Int. J. Clin. Exp. Med. 8(1), 845–853 (2015)PubMedCentralPubMed Y. Lu, S. Hou, D. Huang, X. Luo, J. Zhang, J. Chen, W. Xu, Expression profile analysis of circulating microRNAs and their effects on ion channels in Chinese atrial fibrillation patients. Int. J. Clin. Exp. Med. 8(1), 845–853 (2015)PubMedCentralPubMed
45.
go back to reference B. Yang, H. Lin, J. Xiao, Y. Lu, X. Luo, B. Li, Y. Zhang, C. Xu, Y. Bai, H. Wang, G. Chen, Z. Wang, The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13(4), 486–491 (2007)CrossRefPubMed B. Yang, H. Lin, J. Xiao, Y. Lu, X. Luo, B. Li, Y. Zhang, C. Xu, Y. Bai, H. Wang, G. Chen, Z. Wang, The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13(4), 486–491 (2007)CrossRefPubMed
46.
go back to reference X. Jia, S. Zheng, X. Xie, Y. Zhang, W. Wang, Z. Wang, Y. Zhang, J. Wang, M. Gao, Y. Hou, MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS ONE 8(12), e85639 (2013)PubMedCentralCrossRefPubMed X. Jia, S. Zheng, X. Xie, Y. Zhang, W. Wang, Z. Wang, Y. Zhang, J. Wang, M. Gao, Y. Hou, MicroRNA-1 accelerates the shortening of atrial effective refractory period by regulating KCNE1 and KCNB2 expression: an atrial tachypacing rabbit model. PLoS ONE 8(12), e85639 (2013)PubMedCentralCrossRefPubMed
47.
go back to reference F. Stillitano, G. Lonardo, G. Giunti, M. Del Lungo, R. Coppini, V. Spinelli, L. Sartiani, C. Poggesi, A. Mugelli, E. Cerbai, Chronic atrial fibrillation alters the functional properties of If in the human atrium. J. Cardiovasc. Electrophysiol. 24(12), 1391–1400 (2013)CrossRefPubMed F. Stillitano, G. Lonardo, G. Giunti, M. Del Lungo, R. Coppini, V. Spinelli, L. Sartiani, C. Poggesi, A. Mugelli, E. Cerbai, Chronic atrial fibrillation alters the functional properties of If in the human atrium. J. Cardiovasc. Electrophysiol. 24(12), 1391–1400 (2013)CrossRefPubMed
48.
go back to reference H.D. Yu, S. Xia, C.Q. Zha, S.B. Deng, J.L. Du, Q. She, Spironolactone Regulates HCN Protein Expression Through Micro-RNA-1 in Rats With Myocardial Infarction. J. Cardiovasc. Pharmacol. 65(6), 587–592 (2015)PubMedCentralCrossRefPubMed H.D. Yu, S. Xia, C.Q. Zha, S.B. Deng, J.L. Du, Q. She, Spironolactone Regulates HCN Protein Expression Through Micro-RNA-1 in Rats With Myocardial Infarction. J. Cardiovasc. Pharmacol. 65(6), 587–592 (2015)PubMedCentralCrossRefPubMed
49.
go back to reference Y.D. Li, Y.F. Hong, Y. Yusufuaji, B.P. Tang, X.H. Zhou, G.J. Xu, J.X. Li, L. Sun, J.H. Zhang, Q. Xin, J. Xiong, Y.T. Ji, Y. Zhang, Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol. Med. Rep. 12(3), 3243–3248 (2015)PubMedCentralCrossRefPubMed Y.D. Li, Y.F. Hong, Y. Yusufuaji, B.P. Tang, X.H. Zhou, G.J. Xu, J.X. Li, L. Sun, J.H. Zhang, Q. Xin, J. Xiong, Y.T. Ji, Y. Zhang, Altered expression of hyperpolarization-activated cyclic nucleotide-gated channels and microRNA-1 and -133 in patients with age-associated atrial fibrillation. Mol. Med. Rep. 12(3), 3243–3248 (2015)PubMedCentralCrossRefPubMed
Metadata
Title
Circulating microRNA-1a is a biomarker of Graves’ disease patients with atrial fibrillation
Authors
Fang Wang
Sheng-jie Zhang
Xuan Yao
Dong-mei Tian
Ke-qin Zhang
Dun-min She
Fei-fan Guo
Qi-wei Zhai
Hao Ying
Ying Xue
Publication date
01-07-2017
Publisher
Springer US
Published in
Endocrine / Issue 1/2017
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-017-1331-4

Other articles of this Issue 1/2017

Endocrine 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.