Skip to main content
Top
Published in: EJNMMI Research 1/2015

Open Access 01-12-2015 | Original research

Circadian rhythm influences genome-wide transcriptional responses to 131I in a tissue-specific manner in mice

Authors: Britta Langen, Nils Rudqvist, Toshima Z. Parris, Khalil Helou, Eva Forssell-Aronsson

Published in: EJNMMI Research | Issue 1/2015

Login to get access

Abstract

Background

Circadian variation of gene expression is often neglected when ionizing radiation-induced effects are studied, whether in animal models or in cell culture. This study characterized diurnal variation of genome-wide transcriptional regulation and responses of potential biomarkers and signature genes in normal mouse tissues at 24 h after i.v. administration of 131I.

Methods

Female BALB/c nude mice were i.v. injected with 90 kBq 131I at 9:00 a.m., 12:00 p.m., or 3:00 p.m. and killed after 24 h (n = 4/group). Paired control groups were mock-treated (n = 3–4/group). The kidneys, liver, lungs, spleen, and thyroid were excised, snap-frozen, and stored at −80 °C until extraction of total RNA. RNA microarray technology was used for genome-wide expression analysis. Enriched biological processes were categorized after cellular function. Signature genes for ionizing radiation and thyroid hormone-induced responses were taken from the literature. Absorbed dose was estimated using the Medical Internal Radiation Dose (MIRD) formalism.

Results

The thyroid received an absorbed dose of 5.9 Gy and non-thyroid tissues received 0.75–2.2 mGy over 24 h. A distinct peak in the total number of significantly regulated transcripts was observed at 9:00 a.m. in the thyroid, but 3 h later in the kidney cortex, kidney medulla, and liver. Transcriptional regulation in the lungs and spleen was marginal. Associated cellular functions generally varied in quality and response strength between morning, noon, and afternoon. In the thyroid, 25 genes were significantly regulated at all investigated times of day, and 24 thereof showed a distinct pattern of pronounced down-regulation at 9:00 a.m. and comparatively weak up-regulation at later times. Eleven of these genes belonged to the species-specific kallikrein subfamily Klk1b. Responses in signature genes for thyroid hormone-induced responses were more frequent than for ionizing radiation, and trends persisted irrespective of time of day.

Conclusion

Diurnal variation of genome-wide transcriptional responses to 90 kBq 131I was demonstrated for the thyroid, kidney cortex and medulla, and liver, whereas variation was only marginal in the lungs and spleen. Overall, significant detection of potential biomarkers and signature genes was validated at each time of day, although direction of regulation and fold-change differed between morning, noon, and afternoon. These findings suggest that circadian rhythm should be considered in radiation research and that biological and analytical endpoints should be validated for circadian robustness.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288:1013–9.CrossRefPubMed Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B, et al. Interacting molecular loops in the mammalian circadian clock. Science. 2000;288:1013–9.CrossRefPubMed
3.
5.
go back to reference Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15(Spec No 2):R271–7.CrossRefPubMed Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet. 2006;15(Spec No 2):R271–7.CrossRefPubMed
6.
go back to reference Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407–41. Review.PubMedCentralCrossRefPubMed Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407–41. Review.PubMedCentralCrossRefPubMed
7.
go back to reference Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, et al. Circadian orchestration of the hepatic proteome. Curr Biol. 2006;16:1107–15.CrossRefPubMed Reddy AB, Karp NA, Maywood ES, Sage EA, Deery M, O’Neill JS, et al. Circadian orchestration of the hepatic proteome. Curr Biol. 2006;16:1107–15.CrossRefPubMed
8.
go back to reference Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev. 2004;23:259–68.CrossRefPubMed Snyder AR, Morgan WF. Gene expression profiling after irradiation: clues to understanding acute and persistent responses? Cancer Metastasis Rev. 2004;23:259–68.CrossRefPubMed
10.
go back to reference Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Transcriptional response of BALB/c mouse thyroids following in vivo astatine-211 exposure reveals distinct gene expression profiles. EJNMMI Res. 2012;2:32.PubMedCentralCrossRefPubMed Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Transcriptional response of BALB/c mouse thyroids following in vivo astatine-211 exposure reveals distinct gene expression profiles. EJNMMI Res. 2012;2:32.PubMedCentralCrossRefPubMed
11.
go back to reference Langen B, Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Comparative analysis of transcriptional gene regulation indicates similar physiologic response in mouse tissues at low absorbed doses from intravenously administered 211At. J Nucl Med. 2013;54(6):990–8.CrossRefPubMed Langen B, Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Comparative analysis of transcriptional gene regulation indicates similar physiologic response in mouse tissues at low absorbed doses from intravenously administered 211At. J Nucl Med. 2013;54(6):990–8.CrossRefPubMed
12.
go back to reference Schüler E, Parris TZ, Rudqvist N, Helou K, Forssell-Aronsson E. Effects of internal low-dose irradiation from 131I on gene expression in normal tissues in Balb/c mice. EJNMMI Res. 2011;1:29.PubMedCentralCrossRefPubMed Schüler E, Parris TZ, Rudqvist N, Helou K, Forssell-Aronsson E. Effects of internal low-dose irradiation from 131I on gene expression in normal tissues in Balb/c mice. EJNMMI Res. 2011;1:29.PubMedCentralCrossRefPubMed
13.
go back to reference Rudqvist N, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration. Nucl Med Biol. 2015;42(3):263–8.CrossRefPubMed Rudqvist N, Schüler E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Dose-specific transcriptional responses in thyroid tissue in mice after (131)I administration. Nucl Med Biol. 2015;42(3):263–8.CrossRefPubMed
14.
go back to reference Langen B, Rudqvist N, Parris TZ, Schüler E, Spetz J, Helou K, et al. Transcriptional response in normal mouse tissues after i.v. 211At administration—response related to absorbed dose, dose rate and time. EJNMMI Res. 2015;5:1.PubMedCentralCrossRefPubMed Langen B, Rudqvist N, Parris TZ, Schüler E, Spetz J, Helou K, et al. Transcriptional response in normal mouse tissues after i.v. 211At administration—response related to absorbed dose, dose rate and time. EJNMMI Res. 2015;5:1.PubMedCentralCrossRefPubMed
15.
go back to reference Schüler E, Rudqvist N, Parris TZ, Langen B, Spetz J, Helou K, et al. Time- and dose rate-related effects of internal 177Lu exposure on gene expression in mouse kidney tissue. Nucl Med Biol. 2014;31(10):825–32.CrossRef Schüler E, Rudqvist N, Parris TZ, Langen B, Spetz J, Helou K, et al. Time- and dose rate-related effects of internal 177Lu exposure on gene expression in mouse kidney tissue. Nucl Med Biol. 2014;31(10):825–32.CrossRef
16.
go back to reference Lundh C, Lindencrona U, Schmitt A, Nilsson M, Forssell-Aronsson E. Biodistribution of free 211At and 125I- in nude bearing tumors derived from anaplastic thyroid carcinoma cell lines. Cancer Biother Radiopharm. 2006;21(6):591–600.CrossRefPubMed Lundh C, Lindencrona U, Schmitt A, Nilsson M, Forssell-Aronsson E. Biodistribution of free 211At and 125I- in nude bearing tumors derived from anaplastic thyroid carcinoma cell lines. Cancer Biother Radiopharm. 2006;21(6):591–600.CrossRefPubMed
17.
go back to reference Spetz J, Rudqvist N, Forssell-Aronsson E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother Radiopharm. 2013;28(9):657–64.PubMedCentralCrossRefPubMed Spetz J, Rudqvist N, Forssell-Aronsson E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother Radiopharm. 2013;28(9):657–64.PubMedCentralCrossRefPubMed
18.
go back to reference Lundh C, Lindencrona U, Postgård P, Carlsson T, Nilsson M, Forssell-Aronsson E. Radiation-induced thyroid stunning: differential effects of 123I, 131I, 99mTc, and 211At on iodide transport and NIS mRNA expression in cultured thyroid cells. J Nucl Med. 2009;50:1161–7.CrossRefPubMed Lundh C, Lindencrona U, Postgård P, Carlsson T, Nilsson M, Forssell-Aronsson E. Radiation-induced thyroid stunning: differential effects of 123I, 131I, 99mTc, and 211At on iodide transport and NIS mRNA expression in cultured thyroid cells. J Nucl Med. 2009;50:1161–7.CrossRefPubMed
19.
go back to reference Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50:477–84.CrossRefPubMed Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry—standardization of nomenclature. J Nucl Med. 2009;50:477–84.CrossRefPubMed
20.
go back to reference Garg PK, Harrison CL, Zalutsky MR. Comparative tissue distribution in mice of the alpha-emitter 211At and 131I as labels of a monoclonal antibody and F(ab’)2 fragment. Cancer Res. 1990;50:3514–20.PubMed Garg PK, Harrison CL, Zalutsky MR. Comparative tissue distribution in mice of the alpha-emitter 211At and 131I as labels of a monoclonal antibody and F(ab’)2 fragment. Cancer Res. 1990;50:3514–20.PubMed
21.
go back to reference Flynn AA, Green AJ, Pedley RB, Boxer GM, Boden R, Begent RH. A mouse model for calculating the absorbed beta-particle dose from (131)I- and (90)Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res. 2001;156(1):28–35.CrossRefPubMed Flynn AA, Green AJ, Pedley RB, Boxer GM, Boden R, Begent RH. A mouse model for calculating the absorbed beta-particle dose from (131)I- and (90)Y-labeled immunoconjugates, including a method for dealing with heterogeneity in kidney and tumor. Radiat Res. 2001;156(1):28–35.CrossRefPubMed
22.
go back to reference Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, et al. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res. 2010;16:3860–74.CrossRefPubMed Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, et al. Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res. 2010;16:3860–74.CrossRefPubMed
23.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.
24.
go back to reference Kelleher FC, Rao A, Maguire A. Circadian molecular clocks and cancer. Cancer Lett. 2014;342(1):9–18.CrossRefPubMed Kelleher FC, Rao A, Maguire A. Circadian molecular clocks and cancer. Cancer Lett. 2014;342(1):9–18.CrossRefPubMed
25.
go back to reference Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.PubMedCentralCrossRefPubMed Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.PubMedCentralCrossRefPubMed
26.
go back to reference Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 2002;12:540–50.CrossRefPubMed Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 2002;12:540–50.CrossRefPubMed
27.
go back to reference Rudqvist N, Spetz J, Schüler E, Langen B, Parris TZ, Helou K, et al. Gene expression signature in mouse thyroid tissue after 131I and 211At exposure. EJNMMI Res. 2015;5(1):59. Rudqvist N, Spetz J, Schüler E, Langen B, Parris TZ, Helou K, et al. Gene expression signature in mouse thyroid tissue after 131I and 211At exposure. EJNMMI Res. 2015;5(1):59.
28.
go back to reference Hong CI, Zámborszky J, Csikász-Nagy A. Minimum criteria for DNA damage-induced phase advances in circadian rhythms. PLoS Comput Biol. 2009;5, e1000384.PubMedCentralCrossRefPubMed Hong CI, Zámborszky J, Csikász-Nagy A. Minimum criteria for DNA damage-induced phase advances in circadian rhythms. PLoS Comput Biol. 2009;5, e1000384.PubMedCentralCrossRefPubMed
29.
go back to reference Oike H, Nagai K, Fukushima T, Ishida N, Kobori M. High-salt diet advances molecular circadian rhythms in mouse peripheral tissues. Biochem Biophys Res Commun. 2010;402:7–13.CrossRefPubMed Oike H, Nagai K, Fukushima T, Ishida N, Kobori M. High-salt diet advances molecular circadian rhythms in mouse peripheral tissues. Biochem Biophys Res Commun. 2010;402:7–13.CrossRefPubMed
30.
go back to reference Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, van der Horst GT. Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol. 2008;18:286–91.CrossRefPubMed Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, van der Horst GT. Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol. 2008;18:286–91.CrossRefPubMed
31.
go back to reference Chen-Goodspeed M, Lee CC. Tumor suppression and circadian function. J Biol Rhythms. 2007;22:291–8.CrossRefPubMed Chen-Goodspeed M, Lee CC. Tumor suppression and circadian function. J Biol Rhythms. 2007;22:291–8.CrossRefPubMed
32.
go back to reference Collis SJ, Boulton SJ. Emerging links between the biological clock and the DNA damage response. Chromosoma. 2007;M116:331–9.CrossRef Collis SJ, Boulton SJ. Emerging links between the biological clock and the DNA damage response. Chromosoma. 2007;M116:331–9.CrossRef
33.
go back to reference Kondratov RV, Antoch MP. Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol. 2007;17:311–7.CrossRefPubMed Kondratov RV, Antoch MP. Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol. 2007;17:311–7.CrossRefPubMed
34.
go back to reference Ishihara H, Tanaka I, Yakumaru H, Chikamori M, Ishihara F, Tanaka M, et al. Circadian transitions in radiation dose-dependent augmentation of mRNA levels for DNA damage-induced genes elicited by accurate real-time RT-PCR quantification. J Radiat Res. 2010;51(3):265–75.CrossRefPubMed Ishihara H, Tanaka I, Yakumaru H, Chikamori M, Ishihara F, Tanaka M, et al. Circadian transitions in radiation dose-dependent augmentation of mRNA levels for DNA damage-induced genes elicited by accurate real-time RT-PCR quantification. J Radiat Res. 2010;51(3):265–75.CrossRefPubMed
Metadata
Title
Circadian rhythm influences genome-wide transcriptional responses to 131I in a tissue-specific manner in mice
Authors
Britta Langen
Nils Rudqvist
Toshima Z. Parris
Khalil Helou
Eva Forssell-Aronsson
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2015
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-015-0150-y

Other articles of this Issue 1/2015

EJNMMI Research 1/2015 Go to the issue