Skip to main content
Top
Published in: Diabetologia 12/2017

Open Access 01-12-2017 | Article

Chylomicrons stimulate incretin secretion in mouse and human cells

Authors: Arianna Psichas, Pierre F. Larraufie, Deborah A. Goldspink, Fiona M. Gribble, Frank Reimann

Published in: Diabetologia | Issue 12/2017

Login to get access

Abstract

Aims/hypothesis

Lipids are a potent stimulus for the secretion of glucagon-like peptide (GLP)-1 and glucose-dependent insulinotropic peptide (GIP). Traditionally, this effect was thought to involve the sensing of lipid digestion products by free fatty acid receptor 1 (FFA1) and G-protein coupled receptor 119 (GPR119) on the apical surface of enteroendocrine cells. However, recent evidence suggests that lipids may in fact be sensed basolaterally, and that fatty acid absorption and chylomicron synthesis may be a prerequisite for their stimulatory effect on gut peptide release. Therefore, we investigated the effect of chylomicrons on GLP-1 and GIP secretion in vitro.

Methods

The effect of chylomicrons on incretin secretion was investigated using GLUTag cells and duodenal cultures of both murine and human origin. The role of lipoprotein lipase (LPL) and FFA1 in GLUTag cells was assessed by pharmacological inhibition and small (short) interfering RNA (siRNA)-mediated knockdown. The effect of chylomicrons on intracellular calcium concentration ([Ca2+]i) was determined by imaging GLUTag cells loaded with Fura-2. In the primary setting, the contributions of FFA1 and GPR119 were investigated using L cell-specific Gpr119 knockout cultures treated with the FFA1 antagonist GW1100.

Results

Chylomicrons stimulated GLP-1 release from GLUTag cells, and both GLP-1 and GIP secretion from human and murine duodenal cultures. Chylomicron-triggered GLP-1 secretion from GLUTag cells was largely abolished following lipase inhibition with orlistat or siRNA-mediated knockdown of Lpl. In GLUTag cells, both GW1100 and siRNA-mediated Ffar1 knockdown reduced GLP-1 secretion in response to chylomicrons, and, consistent with FFA1 Gq-coupling, chylomicrons triggered an increase in [Ca2+]i. However, LPL and FFA1 inhibition had no significant effect on chylomicron-mediated incretin secretion in murine cultures. Furthermore, the loss of GPR119 had no impact on GLP-1 secretion in response to chylomicrons, even in the presence of GW1100.

Conclusions/interpretation

Chylomicrons stimulate incretin hormone secretion from GLUTag cells as well as from human and murine duodenal cultures. In GLUTag cells, the molecular pathway was found to involve LPL-mediated lipolysis, leading to the release of lipid species that activated FFA1 and elevated intracellular calcium.
Appendix
Available only for authorised users
Literature
1.
go back to reference Habib AM, Richards P, Cairns LS et al (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153:3054–3065CrossRefPubMedPubMedCentral Habib AM, Richards P, Cairns LS et al (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153:3054–3065CrossRefPubMedPubMedCentral
2.
go back to reference Beglinger S, Drewe J, Schirra J, Goke B, D'Amato M, Beglinger C (2010) Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J Clin Endocrinol Metab 95:879–886CrossRefPubMed Beglinger S, Drewe J, Schirra J, Goke B, D'Amato M, Beglinger C (2010) Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J Clin Endocrinol Metab 95:879–886CrossRefPubMed
3.
go back to reference Lindgren O, Carr RD, Deacon CF et al (2011) Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab 96:2519–2524CrossRefPubMed Lindgren O, Carr RD, Deacon CF et al (2011) Incretin hormone and insulin responses to oral versus intravenous lipid administration in humans. J Clin Endocrinol Metab 96:2519–2524CrossRefPubMed
4.
go back to reference Matikainen N, Bjornson E, Soderlund S et al (2016) Minor contribution of endogenous GLP-1 and GLP-2 to postprandial lipemia in obese men. PLoS One 11:e0145890CrossRefPubMedPubMedCentral Matikainen N, Bjornson E, Soderlund S et al (2016) Minor contribution of endogenous GLP-1 and GLP-2 to postprandial lipemia in obese men. PLoS One 11:e0145890CrossRefPubMedPubMedCentral
5.
go back to reference Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57:2280–2287CrossRefPubMedPubMedCentral Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57:2280–2287CrossRefPubMedPubMedCentral
6.
go back to reference Xiong Y, Swaminath G, Cao Q et al (2013) Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol Cell Endocrinol 369:119–129CrossRefPubMed Xiong Y, Swaminath G, Cao Q et al (2013) Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol Cell Endocrinol 369:119–129CrossRefPubMed
7.
go back to reference Hirasawa A, Tsumaya K, Awaji T et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94CrossRefPubMed Hirasawa A, Tsumaya K, Awaji T et al (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94CrossRefPubMed
8.
go back to reference Briscoe CP, Tadayyon M, Andrews JL et al (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311CrossRefPubMed Briscoe CP, Tadayyon M, Andrews JL et al (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311CrossRefPubMed
9.
go back to reference Kotarsky K, Nilsson NE, Olde B, Owman C (2003) Progress in methodology. Improved reporter gene assays used to identify ligands acting on orphan seven-transmembrane receptors. Pharmacol Toxicol 93:249–258CrossRefPubMed Kotarsky K, Nilsson NE, Olde B, Owman C (2003) Progress in methodology. Improved reporter gene assays used to identify ligands acting on orphan seven-transmembrane receptors. Pharmacol Toxicol 93:249–258CrossRefPubMed
10.
go back to reference Itoh Y, Hinuma S (2005) GPR40, a free fatty acid receptor on pancreatic beta cells, regulates insulin secretion. Hepatol Res 33:171–173PubMed Itoh Y, Hinuma S (2005) GPR40, a free fatty acid receptor on pancreatic beta cells, regulates insulin secretion. Hepatol Res 33:171–173PubMed
11.
go back to reference Hauge M, Vestmar MA, Husted AS et al (2015) GPR40 (FFAR1)—combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4:3–14CrossRefPubMed Hauge M, Vestmar MA, Husted AS et al (2015) GPR40 (FFAR1)—combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab 4:3–14CrossRefPubMed
12.
go back to reference Lan H, Lin HV, Wang CF et al (2012) Agonists at GPR119 mediate secretion of GLP-1 from mouse enteroendocrine cells through glucose-independent pathways. Br J Pharmacol 165:2799–2807CrossRefPubMedPubMedCentral Lan H, Lin HV, Wang CF et al (2012) Agonists at GPR119 mediate secretion of GLP-1 from mouse enteroendocrine cells through glucose-independent pathways. Br J Pharmacol 165:2799–2807CrossRefPubMedPubMedCentral
13.
go back to reference Moss CE, Glass LL, Diakogiannaki E et al (2016) Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 77:16–20CrossRefPubMedPubMedCentral Moss CE, Glass LL, Diakogiannaki E et al (2016) Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. Peptides 77:16–20CrossRefPubMedPubMedCentral
14.
go back to reference Ekberg JH, Hauge M, Kristensen LV et al (2016) GPR119, a major enteroendocrine sensor of dietary triglyceride metabolites coacting in synergy with FFA1 (GPR40). Endocrinology 157:4561–4569CrossRefPubMed Ekberg JH, Hauge M, Kristensen LV et al (2016) GPR119, a major enteroendocrine sensor of dietary triglyceride metabolites coacting in synergy with FFA1 (GPR40). Endocrinology 157:4561–4569CrossRefPubMed
15.
go back to reference Reimann F, Tolhurst G, Gribble FM (2012) G-protein-coupled receptors in intestinal chemosensation. Cell Metab 15:421–431CrossRefPubMed Reimann F, Tolhurst G, Gribble FM (2012) G-protein-coupled receptors in intestinal chemosensation. Cell Metab 15:421–431CrossRefPubMed
16.
go back to reference Christensen LW, Kuhre RE, Janus C, Svendsen B, Holst JJ (2015) Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine. Phys Rep 3:e12551CrossRef Christensen LW, Kuhre RE, Janus C, Svendsen B, Holst JJ (2015) Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine. Phys Rep 3:e12551CrossRef
17.
18.
go back to reference Lu WJ, Yang Q, Yang L, Lee D, D'Alessio D, Tso P (2012) Chylomicron formation and secretion is required for lipid-stimulated release of incretins GLP-1 and GIP. Lipids 47:571–580CrossRefPubMedPubMedCentral Lu WJ, Yang Q, Yang L, Lee D, D'Alessio D, Tso P (2012) Chylomicron formation and secretion is required for lipid-stimulated release of incretins GLP-1 and GIP. Lipids 47:571–580CrossRefPubMedPubMedCentral
19.
20.
go back to reference Pais R, Rievaj J, Larraufie P, Gribble F, Reimann F (2016) Angiotensin II type 1 receptor-dependent GLP-1 and PYY secretion in mice and humans. Endocrinology 157:3821–3831CrossRefPubMedPubMedCentral Pais R, Rievaj J, Larraufie P, Gribble F, Reimann F (2016) Angiotensin II type 1 receptor-dependent GLP-1 and PYY secretion in mice and humans. Endocrinology 157:3821–3831CrossRefPubMedPubMedCentral
21.
go back to reference Psichas A, Glass LL, Sharp SJ, Reimann F, Gribble FM (2016) Galanin inhibits GLP-1 and GIP secretion via the GAL1 receptor in enteroendocrine L and K cells. Br J Pharmacol 173:888–898CrossRefPubMedPubMedCentral Psichas A, Glass LL, Sharp SJ, Reimann F, Gribble FM (2016) Galanin inhibits GLP-1 and GIP secretion via the GAL1 receptor in enteroendocrine L and K cells. Br J Pharmacol 173:888–898CrossRefPubMedPubMedCentral
22.
go back to reference Psichas A, Tolhurst G, Brighton CA, Gribble FM, Reimann F (2017) Mixed primary cultures of murine small intestine intended for the study of gut hormone secretion and live cell imaging of enteroendocrine cells. J Vis Exp.: e55687 Psichas A, Tolhurst G, Brighton CA, Gribble FM, Reimann F (2017) Mixed primary cultures of murine small intestine intended for the study of gut hormone secretion and live cell imaging of enteroendocrine cells. J Vis Exp.: e55687
23.
go back to reference Drucker DJ, Jin TR, Asa SL, Young TA, Brubaker PL (1994) Activation of proglucagon gene-transcription by protein kinase-A in a novel mouse enteroendocrine cell-line. Mol Endocrinol 8:1646–1655PubMed Drucker DJ, Jin TR, Asa SL, Young TA, Brubaker PL (1994) Activation of proglucagon gene-transcription by protein kinase-A in a novel mouse enteroendocrine cell-line. Mol Endocrinol 8:1646–1655PubMed
24.
go back to reference Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51:2757–2763CrossRefPubMed Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51:2757–2763CrossRefPubMed
25.
go back to reference Emery EC, Diakogiannaki E, Gentry C et al (2015) Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes 64:1202–1210CrossRefPubMed Emery EC, Diakogiannaki E, Gentry C et al (2015) Stimulation of GLP-1 secretion downstream of the ligand-gated ion channel TRPA1. Diabetes 64:1202–1210CrossRefPubMed
26.
go back to reference Reimer RA (2006) Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion, in the human NCI-H716 enteroendocrine cell line, is regulated by extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinases. J Endocrinol 191:159–170CrossRefPubMed Reimer RA (2006) Meat hydrolysate and essential amino acid-induced glucagon-like peptide-1 secretion, in the human NCI-H716 enteroendocrine cell line, is regulated by extracellular signal-regulated kinase1/2 and p38 mitogen-activated protein kinases. J Endocrinol 191:159–170CrossRefPubMed
27.
go back to reference Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL (2009) Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 150:580–591CrossRefPubMedPubMedCentral Lim GE, Huang GJ, Flora N, LeRoith D, Rhodes CJ, Brubaker PL (2009) Insulin regulates glucagon-like peptide-1 secretion from the enteroendocrine L cell. Endocrinology 150:580–591CrossRefPubMedPubMedCentral
28.
go back to reference Pallasch CP, Schwamb J, Konigs S et al (2008) Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B cell chronic lymphocytic leukemia cells. Leukemia 22:585–592CrossRefPubMed Pallasch CP, Schwamb J, Konigs S et al (2008) Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B cell chronic lymphocytic leukemia cells. Leukemia 22:585–592CrossRefPubMed
29.
go back to reference Lin C, Rajalahti T, Mjos SA, Kvalheim OM (2016) Predictive associations between serum fatty acids and lipoproteins in healthy non-obese Norwegians: implications for cardiovascular health. Metabolomics Lin C, Rajalahti T, Mjos SA, Kvalheim OM (2016) Predictive associations between serum fatty acids and lipoproteins in healthy non-obese Norwegians: implications for cardiovascular health. Metabolomics
30.
go back to reference Briscoe CP, Peat AJ, McKeown SC et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148:619–628CrossRefPubMedPubMedCentral Briscoe CP, Peat AJ, McKeown SC et al (2006) Pharmacological regulation of insulin secretion in MIN6 cells through the fatty acid receptor GPR40: identification of agonist and antagonist small molecules. Br J Pharmacol 148:619–628CrossRefPubMedPubMedCentral
31.
go back to reference Chandra R, Wang Y, Shahid RA, Vigna SR, Freedman NJ, Liddle RA (2013) Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion. J Clin Invest 123:3343–3352CrossRefPubMedPubMedCentral Chandra R, Wang Y, Shahid RA, Vigna SR, Freedman NJ, Liddle RA (2013) Immunoglobulin-like domain containing receptor 1 mediates fat-stimulated cholecystokinin secretion. J Clin Invest 123:3343–3352CrossRefPubMedPubMedCentral
32.
go back to reference Orsolin PC, Silva-Oliveira RG, Nepomuceno JC (2012) Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster. Food and Chem Toxicol 50:2598–2604CrossRef Orsolin PC, Silva-Oliveira RG, Nepomuceno JC (2012) Assessment of the mutagenic, recombinagenic and carcinogenic potential of orlistat in somatic cells of Drosophila melanogaster. Food and Chem Toxicol 50:2598–2604CrossRef
33.
go back to reference Oya M, Kitaguchi T, Pais R, Reimann F, Gribble F, Tsuboi T (2013) The G protein-coupled receptor family C group 6 subtype A (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells. J Biol Chem 288:4513–4521CrossRefPubMed Oya M, Kitaguchi T, Pais R, Reimann F, Gribble F, Tsuboi T (2013) The G protein-coupled receptor family C group 6 subtype A (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells. J Biol Chem 288:4513–4521CrossRefPubMed
34.
go back to reference Diakogiannaki E, Pais R, Tolhurst G et al (2013) Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia 56:2688–2696CrossRefPubMedPubMedCentral Diakogiannaki E, Pais R, Tolhurst G et al (2013) Oligopeptides stimulate glucagon-like peptide-1 secretion in mice through proton-coupled uptake and the calcium-sensing receptor. Diabetologia 56:2688–2696CrossRefPubMedPubMedCentral
35.
36.
go back to reference Glatzle J, Darcel N, Rechs AJ, Kalogeris TJ, Tso P, Raybould HE (2004) Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway. Am J Physiol Regul Integr Comp Physiol 287:R354–R359CrossRefPubMed Glatzle J, Darcel N, Rechs AJ, Kalogeris TJ, Tso P, Raybould HE (2004) Apolipoprotein A-IV stimulates duodenal vagal afferent activity to inhibit gastric motility via a CCK1 pathway. Am J Physiol Regul Integr Comp Physiol 287:R354–R359CrossRefPubMed
37.
go back to reference Lo CC, Langhans W, Georgievsky M et al (2012) Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake. Endocrinology 153:5857–5865CrossRefPubMedPubMedCentral Lo CC, Langhans W, Georgievsky M et al (2012) Apolipoprotein AIV requires cholecystokinin and vagal nerves to suppress food intake. Endocrinology 153:5857–5865CrossRefPubMedPubMedCentral
38.
go back to reference Wang F, Kohan AB, Kindel TL et al (2012) Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A 109:9641–9646CrossRefPubMedPubMedCentral Wang F, Kohan AB, Kindel TL et al (2012) Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A 109:9641–9646CrossRefPubMedPubMedCentral
39.
go back to reference Drucker DJ, Erlich P, Asa SL, Brubaker PL (1996) Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A 93:7911–7916CrossRefPubMedPubMedCentral Drucker DJ, Erlich P, Asa SL, Brubaker PL (1996) Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A 93:7911–7916CrossRefPubMedPubMedCentral
40.
go back to reference Drucker DJ, Yusta B (2014) Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 76:561–583CrossRefPubMed Drucker DJ, Yusta B (2014) Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 76:561–583CrossRefPubMed
41.
go back to reference Hsieh J, Longuet C, Maida A et al (2009) Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137:997–1005CrossRefPubMed Hsieh J, Longuet C, Maida A et al (2009) Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology 137:997–1005CrossRefPubMed
42.
go back to reference Hsieh J, Trajcevski KE, Farr SL et al (2015) Glucagon-like peptide 2 (GLP-2) stimulates postprandial chylomicron production and postabsorptive release of intestinal triglyceride storage pools via induction of nitric oxide signaling in male hamsters and mice. Endocrinology 156:3538–3547CrossRefPubMed Hsieh J, Trajcevski KE, Farr SL et al (2015) Glucagon-like peptide 2 (GLP-2) stimulates postprandial chylomicron production and postabsorptive release of intestinal triglyceride storage pools via induction of nitric oxide signaling in male hamsters and mice. Endocrinology 156:3538–3547CrossRefPubMed
43.
go back to reference Dash S, Xiao C, Morgantini C, Connelly PW, Patterson BW, Lewis GF (2014) Glucagon-like peptide-2 regulates release of chylomicrons from the intestine. Gastroenterology 147:1275–1284.e1274CrossRefPubMedPubMedCentral Dash S, Xiao C, Morgantini C, Connelly PW, Patterson BW, Lewis GF (2014) Glucagon-like peptide-2 regulates release of chylomicrons from the intestine. Gastroenterology 147:1275–1284.e1274CrossRefPubMedPubMedCentral
44.
go back to reference Hein GJ, Baker C, Hsieh J, Farr S, Adeli K (2013) GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2-stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 62:373–381CrossRefPubMedPubMedCentral Hein GJ, Baker C, Hsieh J, Farr S, Adeli K (2013) GLP-1 and GLP-2 as yin and yang of intestinal lipoprotein production: evidence for predominance of GLP-2-stimulated postprandial lipemia in normal and insulin-resistant states. Diabetes 62:373–381CrossRefPubMedPubMedCentral
45.
go back to reference Tso P, Balint JA, Bishop MB, Rodgers JB (1981) Acute inhibition of intestinal lipid transport by Pluronic L-81 in the rat. Am J Phys 241:G487–G497 Tso P, Balint JA, Bishop MB, Rodgers JB (1981) Acute inhibition of intestinal lipid transport by Pluronic L-81 in the rat. Am J Phys 241:G487–G497
46.
go back to reference Fatma S, Yakubov R, Anwar K, Hussain MM (2006) Pluronic L81 enhances triacylglycerol accumulation in the cytosol and inhibits chylomicron secretion. J Lipid Res 47:2422–2432CrossRefPubMed Fatma S, Yakubov R, Anwar K, Hussain MM (2006) Pluronic L81 enhances triacylglycerol accumulation in the cytosol and inhibits chylomicron secretion. J Lipid Res 47:2422–2432CrossRefPubMed
Metadata
Title
Chylomicrons stimulate incretin secretion in mouse and human cells
Authors
Arianna Psichas
Pierre F. Larraufie
Deborah A. Goldspink
Fiona M. Gribble
Frank Reimann
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 12/2017
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4420-2

Other articles of this Issue 12/2017

Diabetologia 12/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.