Skip to main content
Top
Published in: Respiratory Research 1/2022

Open Access 01-12-2022 | Chronic Obstructive Lung Disease | Research

Propylene glycol, a component of electronic cigarette liquid, damages epithelial cells in human small airways

Authors: Moegi Komura, Tadashi Sato, Hitomi Yoshikawa, Naoko Arano Nitta, Yohei Suzuki, Kengo Koike, Yuzo Kodama, Kuniaki Seyama, Kazuhisa Takahashi

Published in: Respiratory Research | Issue 1/2022

Login to get access

Abstract

Background

Electronic cigarettes (e-cigarettes) are used worldwide as a substitute for conventional cigarettes. Although they are primarily intended to support smoking cessation, e-cigarettes have been identified as a gateway to smoking habits for young people. Multiple recent reports have described the health effects of inhaling e-cigarettes. E-cigarette liquid (e-liquid) is mainly composed of propylene glycol (PG) and glycerol (Gly), and the aerosol generated by these devices primarily contains these two components. Thus, this study aimed to evaluate the effects of PG and Gly on human small airway epithelial cells (SAECs).

Methods

SAECs were exposed to PG or Gly, and cell proliferation, cell viability, lactate dehydrogenase (LDH) release, DNA damage, cell cycle, and apoptosis were evaluated. Additionally, SAECs derived from chronic obstructive pulmonary disease (COPD) patients (COPD-SAECs) were investigated.

Results

Exposure of SAECs to PG significantly inhibited proliferation (1%, PG, p = 0.021; 2–4% PG, p < 0.0001) and decreased cell viability (1–4% PG, p < 0.0001) in a concentration-dependent manner. Gly elicited similar effects but to a reduced degree as compared to the same concentration of PG. PG also increased LDH release in a concentration-dependent manner (3% PG, p = 0.0055; 4% PG, p < 0.0001), whereas Gly did not show a significant effect on LDH release. SAECs exposed to 4% PG contained more cells that were positive for phosphorylated histone H2AX (p < 0.0001), a marker of DNA damage, and an increased proportion of cells in the G1 phase (p < 0.0001) and increased p21 expression (p = 0.0005). Moreover, caspase 3/7-activated cells and cleaved poly (ADP-ribose) polymerase 1 expression were increased in SAECs exposed to 4% PG (p = 0.0054). Furthermore, comparing COPD-SAECs to SAECs without COPD in PG exposure, cell proliferation, cell viability, DNA damage and apoptosis were significantly greater in COPD-SAECs.

Conclusion

PG damaged SAECs more than Gly. In addition, COPD-SAECs were more susceptible to PG than SAECs without COPD. Usage of e-cigarettes may be harmful to the respiratory system, especially in patients with COPD.
Literature
Metadata
Title
Propylene glycol, a component of electronic cigarette liquid, damages epithelial cells in human small airways
Authors
Moegi Komura
Tadashi Sato
Hitomi Yoshikawa
Naoko Arano Nitta
Yohei Suzuki
Kengo Koike
Yuzo Kodama
Kuniaki Seyama
Kazuhisa Takahashi
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2022
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-022-02142-2

Other articles of this Issue 1/2022

Respiratory Research 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.