Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Chronic Myeloid Leukemia | Research

Effect of asciminib and vitamin K2 on Abelson tyrosine-kinase-inhibitor-resistant chronic myelogenous leukemia cells

Authors: Seiichi Okabe, Akihiko Gotoh

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Background

Abelson (ABL) tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML); however, many patients develop resistance during ABL TKI therapy. Vitamin K2 (VK2) is a crucial fat-soluble vitamin used to activate hepatic coagulation factors and treat osteoporosis. Although VK2 has demonstrated impressive anticancer activity in various cancer cell lines, it is not known whether VK2 enhances the effects of asciminib, which specifically targets the ABL myristoyl pocket (STAMP) inhibitor.

Method

In this work, we investigated whether VK2 contributed to the development of CML cell lines. We also investigated the efficacy of asciminib and VK2 by using K562, ponatinib-resistant K562 (K562 PR), Ba/F3 BCR–ABL, and T315I point mutant Ba/F3 (Ba/F3 T315I) cells.

Results

Based on data from the Gene Expression Omnibus (GEO) database, gamma-glutamyl carboxylase (GGCX) and vitamin K epoxide reductase complex subunit 1 (VKORC1) were elevated in imatinib-resistant patients (GSE130404). UBIA Prenyltransferase Domain Containing 1 (UBIAD1) was decreased, and K562 PR cells were resistant to ponatinib. In contrast, asciminib inhibited CML cells and ponatinib resistance in a dose-dependent manner. CML cells were suppressed by VK2. Caspase 3/7 activity was also elevated, as was cellular cytotoxicity. Asciminib plus VK2 therapy induced a significantly higher level of cytotoxicity than use of each drug alone. Asciminib and VK2 therapy altered the mitochondrial membrane potential.

Conclusions

Asciminib and VK2 are suggested as a novel treatment for ABL-TKI-resistant cells since they increase treatment efficacy. Additionally, this treatment option has intriguing clinical relevance for patients who are resistant to ABL TKIs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72.CrossRefPubMed Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72.CrossRefPubMed
2.
go back to reference Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5:172–83.CrossRefPubMed Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5:172–83.CrossRefPubMed
3.
go back to reference Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93:442–59.CrossRefPubMed Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93:442–59.CrossRefPubMed
4.
go back to reference García-Gutiérrez V, Breccia M, Jabbour E, Mauro M, Cortes JE. A clinician perspective on the treatment of chronic myeloid leukemia in the chronic phase. J Hematol Oncol. 2022;15:90.CrossRefPubMedPubMedCentral García-Gutiérrez V, Breccia M, Jabbour E, Mauro M, Cortes JE. A clinician perspective on the treatment of chronic myeloid leukemia in the chronic phase. J Hematol Oncol. 2022;15:90.CrossRefPubMedPubMedCentral
5.
go back to reference Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018;61:8120–35.CrossRefPubMed Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, et al. Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J Med Chem. 2018;61:8120–35.CrossRefPubMed
6.
go back to reference Réa D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit Rev Oncol Hematol. 2022;171:103580.CrossRefPubMed Réa D, Hughes TP. Development of asciminib, a novel allosteric inhibitor of BCR-ABL1. Crit Rev Oncol Hematol. 2022;171:103580.CrossRefPubMed
8.
go back to reference Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci. 2019;20:896.CrossRefPubMedPubMedCentral Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F, Anderson E, et al. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int J Mol Sci. 2019;20:896.CrossRefPubMedPubMedCentral
9.
go back to reference Gul S, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, et al. Vitamin K: a novel cancer chemosensitizer. Biotechnol Appl Biochem. 2022;69:2641–57.CrossRefPubMed Gul S, Maqbool MF, Maryam A, Khan M, Shakir HA, Irfan M, et al. Vitamin K: a novel cancer chemosensitizer. Biotechnol Appl Biochem. 2022;69:2641–57.CrossRefPubMed
10.
go back to reference Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, et al. Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008;4:629–40.CrossRefPubMed Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, et al. Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008;4:629–40.CrossRefPubMed
11.
go back to reference Miyazawa S, Moriya S, Kokuba H, Hino H, Takano N, Miyazawa K. Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines. Breast Cancer. 2020;27:225–35.CrossRefPubMed Miyazawa S, Moriya S, Kokuba H, Hino H, Takano N, Miyazawa K. Vitamin K2 induces non-apoptotic cell death along with autophagosome formation in breast cancer cell lines. Breast Cancer. 2020;27:225–35.CrossRefPubMed
12.
go back to reference Yokoyama T, Miyazawa K, Yoshida T, Ohyashiki K. Combination of vitamin K2 plus imatinib mesylate enhances induction of apoptosis in small cell lung cancer cell lines. Int J Oncol. 2005;26:33–40.PubMed Yokoyama T, Miyazawa K, Yoshida T, Ohyashiki K. Combination of vitamin K2 plus imatinib mesylate enhances induction of apoptosis in small cell lung cancer cell lines. Int J Oncol. 2005;26:33–40.PubMed
13.
go back to reference Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K, et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood. 2005;106:3948–54.CrossRefPubMed Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K, et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood. 2005;106:3948–54.CrossRefPubMed
14.
go back to reference Okabe S, Tanaka Y, Moriyama M, Gotoh A. Efficacy of dasatinib against ponatinib-resistant chronic myeloid leukemia cells. Leuk Lymphoma. 2020;61:237–9.CrossRefPubMed Okabe S, Tanaka Y, Moriyama M, Gotoh A. Efficacy of dasatinib against ponatinib-resistant chronic myeloid leukemia cells. Leuk Lymphoma. 2020;61:237–9.CrossRefPubMed
15.
go back to reference Kok CH, Yeung DT, Lu L, Watkins DB, Leclercq TM, Dang P, et al. Gene expression signature that predicts early molecular response failure in chronic-phase CML patients on frontline imatinib. Blood Adv. 2019;3:1610–21.CrossRefPubMedPubMedCentral Kok CH, Yeung DT, Lu L, Watkins DB, Leclercq TM, Dang P, et al. Gene expression signature that predicts early molecular response failure in chronic-phase CML patients on frontline imatinib. Blood Adv. 2019;3:1610–21.CrossRefPubMedPubMedCentral
16.
17.
18.
go back to reference Massaro F, Molica M, Breccia M, Ponatinib. A review of efficacy and safety. Curr Cancer Drug Targets. 2018;18:847–56.CrossRefPubMed Massaro F, Molica M, Breccia M, Ponatinib. A review of efficacy and safety. Curr Cancer Drug Targets. 2018;18:847–56.CrossRefPubMed
19.
go back to reference Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA. 2008;105:12815–9.CrossRefPubMedPubMedCentral Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA. 2008;105:12815–9.CrossRefPubMedPubMedCentral
20.
go back to reference Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1:2315–9.CrossRefPubMed
21.
go back to reference Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, et al. c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Rep. 2015;10:484–96.CrossRefPubMed Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, et al. c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Rep. 2015;10:484–96.CrossRefPubMed
22.
go back to reference Crawford LJ, Chan ET, Aujay M, Holyoake TL, Melo JV, Jorgensen HG, et al. Synergistic effects of proteasome inhibitor carfilzomib in combination with tyrosine kinase inhibitors in imatinib-sensitive and -resistant chronic myeloid leukemia models. Oncogenesis. 2014;3:e90.CrossRefPubMedPubMedCentral Crawford LJ, Chan ET, Aujay M, Holyoake TL, Melo JV, Jorgensen HG, et al. Synergistic effects of proteasome inhibitor carfilzomib in combination with tyrosine kinase inhibitors in imatinib-sensitive and -resistant chronic myeloid leukemia models. Oncogenesis. 2014;3:e90.CrossRefPubMedPubMedCentral
24.
go back to reference Lv J, Bhatia M, Wang X. Roles of mitochondrial DNA in energy metabolism. Adv Exp Med Biol. 2017;1038:71–83.CrossRefPubMed Lv J, Bhatia M, Wang X. Roles of mitochondrial DNA in energy metabolism. Adv Exp Med Biol. 2017;1038:71–83.CrossRefPubMed
25.
go back to reference Bhamidipati PK, Kantarjian H, Cortes J, Cornelison AM, Jabbour E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol. 2013;4:103–17.CrossRefPubMedPubMedCentral Bhamidipati PK, Kantarjian H, Cortes J, Cornelison AM, Jabbour E. Management of imatinib-resistant patients with chronic myeloid leukemia. Ther Adv Hematol. 2013;4:103–17.CrossRefPubMedPubMedCentral
26.
go back to reference Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29:999–1003.CrossRefPubMedPubMedCentral Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29:999–1003.CrossRefPubMedPubMedCentral
27.
go back to reference Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European leukemia net recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.CrossRefPubMedPubMedCentral Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European leukemia net recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.CrossRefPubMedPubMedCentral
28.
go back to reference Hao Z, Jin DY, Stafford DW, Tie JK. Vitamin K-dependent carboxylation of coagulation factors: insights from a cell-based functional study. Haematologica. 2020;105:2164–73.CrossRefPubMedPubMedCentral Hao Z, Jin DY, Stafford DW, Tie JK. Vitamin K-dependent carboxylation of coagulation factors: insights from a cell-based functional study. Haematologica. 2020;105:2164–73.CrossRefPubMedPubMedCentral
30.
go back to reference Hirota Y, Nakagawa K, Sawada N, Okuda N, Suhara Y, Uchino Y, et al. Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1. PLoS ONE. 2015;10:e0125737.CrossRefPubMedPubMedCentral Hirota Y, Nakagawa K, Sawada N, Okuda N, Suhara Y, Uchino Y, et al. Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1. PLoS ONE. 2015;10:e0125737.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, et al. Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol. 2013;43:638–52.CrossRefPubMed Fredericks WJ, Yin H, Lal P, Puthiyaveettil R, Malkowicz SB, Fredericks NJ, et al. Ectopic expression of the TERE1 (UBIAD1) protein inhibits growth of renal clear cell carcinoma cells: altered metabolic phenotype associated with reactive oxygen species, nitric oxide and SXR target genes involved in cholesterol and lipid metabolism. Int J Oncol. 2013;43:638–52.CrossRefPubMed
33.
go back to reference Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98.CrossRefPubMedPubMedCentral Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–98.CrossRefPubMedPubMedCentral
34.
35.
go back to reference Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36:431–43.CrossRefPubMedPubMedCentral Eide CA, Zabriskie MS, Savage Stevens SL, Antelope O, Vellore NA, Than H, et al. Combining the allosteric inhibitor asciminib with ponatinib suppresses emergence of and restores efficacy against highly resistant BCR-ABL1 mutants. Cancer Cell. 2019;36:431–43.CrossRefPubMedPubMedCentral
Metadata
Title
Effect of asciminib and vitamin K2 on Abelson tyrosine-kinase-inhibitor-resistant chronic myelogenous leukemia cells
Authors
Seiichi Okabe
Akihiko Gotoh
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11304-4

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine