Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Chronic Kidney Disease | Research

The seasonality, steroid use, and lower ratio of neutrophil to lymphocyte associated with bacteremia of Listeria monocytogenes in Japan from 2010 to 2019: a case–control study

Authors: Yusuke Watanabe, Itaru Nakamura, Yuri Miura, Hidehiro Watanabe

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Despite having a high mortality rate, Asian studies about the characteristics of adult listeriosis are limited. We investigated the incidence of listeriosis per admissions, associated factors, and rate of mortality in listeriosis, compared with non-listeriosis.

Methods

We recorded the incidence of listeriosis per 10,000 admissions and conducted a case–control study from January 1, 2010, to December 31, 2019, at Tokyo Medical University Hospital (TMUH) in Japan. Cases were defined as adult with listeriosis that was bacteremia due to L. monocytogenes. Controls, defined as adult with non-listeriosis bacteremia due to other pathogens, were matched by age and clinical department to cases. We analyzed differences in seasonality, including warm season (defined as the period from May to October), medication including steroids, laboratory findings, and mortality. The odds ratio and p value between the cases group and control group were calculated using a chi-square test and Fisher’s exact test.

Results

The incidence of listeriosis per 10,000 admissions to TMUH was 0.51. Eleven patients, excluding one neonate, were included in the case group. Twenty-six patients, excluding one patient because of contamination and one patient because of insufficient medical record, were included in the control group. Listeriosis onset was associated with the warm season (90.9% vs. 53.8%; p = 0.033), steroid use (54.5% vs. 19.2%; p = 0.042), and a lower ratio of neutrophils to lymphocytes (9.46 vs. 18.44; p = 0.015). The 30-day mortality rate of listeriosis was similar to non-listeriosis (18.3% vs. 19.2%; p = 0.619).

Conclusion

The incidence of listeriosis per admissions in this study was similar to that in other Asian countries. Factors associated with listeriosis were the warm season, steroid use, and a lower ratio of neutrophils to lymphocytes. Additionally, the 30-day mortality rate was similarly high in both the listeriosis and non-listeriosis groups.
Literature
1.
go back to reference Silk BJ, McCoy MH, Iwamoto M, Griffin PM. Foodborne listeriosis acquired in hospitals. Clin Infect Dis. 2014;59(4):532–40.CrossRef Silk BJ, McCoy MH, Iwamoto M, Griffin PM. Foodborne listeriosis acquired in hospitals. Clin Infect Dis. 2014;59(4):532–40.CrossRef
2.
go back to reference Russini V, Spaziante M, Zottola T, Fermani AG, Di Giampietro G, Blanco G, Fabietti P, Marrone R, Parisella R, Parrocchia S, et al. A nosocomial outbreak of invasive Listeriosis in an Italian Hospital: epidemiological and genomic features. Pathogens. 2021;10(5):591.CrossRef Russini V, Spaziante M, Zottola T, Fermani AG, Di Giampietro G, Blanco G, Fabietti P, Marrone R, Parisella R, Parrocchia S, et al. A nosocomial outbreak of invasive Listeriosis in an Italian Hospital: epidemiological and genomic features. Pathogens. 2021;10(5):591.CrossRef
3.
go back to reference Schuchat A, Lizano C, Broome CV, Swaminathan B, Kim C, Winn K. Outbreak of neonatal listeriosis associated with mineral oil. Pediatr Infect Dis J. 1991;10(3):183–9.CrossRef Schuchat A, Lizano C, Broome CV, Swaminathan B, Kim C, Winn K. Outbreak of neonatal listeriosis associated with mineral oil. Pediatr Infect Dis J. 1991;10(3):183–9.CrossRef
4.
go back to reference Aureli P, Fiorucci GC, Caroli D, Marchiaro G, Novara O, Leone L, Salmaso S. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med. 2000;342(17):1236–41.CrossRef Aureli P, Fiorucci GC, Caroli D, Marchiaro G, Novara O, Leone L, Salmaso S. An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med. 2000;342(17):1236–41.CrossRef
5.
go back to reference Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE. Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg Infect Dis. 2013;19(1):1–9.CrossRef Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE. Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg Infect Dis. 2013;19(1):1–9.CrossRef
6.
go back to reference Kvistholm Jensen A, Nielsen EM, Björkman JT, Jensen T, Müller L, Persson S, Bjerager G, Perge A, Krause TG, Kiil K, et al. Whole-genome sequencing used to investigate a nationwide outbreak of listeriosis caused by ready-to-eat delicatessen meat, Denmark, 2014. Clin Infect Dis. 2016;63(1):64–70.CrossRef Kvistholm Jensen A, Nielsen EM, Björkman JT, Jensen T, Müller L, Persson S, Bjerager G, Perge A, Krause TG, Kiil K, et al. Whole-genome sequencing used to investigate a nationwide outbreak of listeriosis caused by ready-to-eat delicatessen meat, Denmark, 2014. Clin Infect Dis. 2016;63(1):64–70.CrossRef
7.
go back to reference McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O’Connor KA, Cosgrove S, Gossack JP, Parachini SS, Jain NS, Ettestad P, et al. Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med. 2013;369(10):944–53.CrossRef McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O’Connor KA, Cosgrove S, Gossack JP, Parachini SS, Jain NS, Ettestad P, et al. Multistate outbreak of listeriosis associated with cantaloupe. N Engl J Med. 2013;369(10):944–53.CrossRef
8.
go back to reference McLauchlin J, Aird H, Amar C, Barker C, Dallman T, Lai S, Painset A, Willis C. An outbreak of human listeriosis associated with frozen sweet corn consumption: investigations in the UK. Int J Food Microbiol. 2021;338:108994.CrossRef McLauchlin J, Aird H, Amar C, Barker C, Dallman T, Lai S, Painset A, Willis C. An outbreak of human listeriosis associated with frozen sweet corn consumption: investigations in the UK. Int J Food Microbiol. 2021;338:108994.CrossRef
9.
go back to reference Charlier C, Perrodeau É, Leclercq A, Cazenave B, Pilmis B, Henry B, Lopes A, Maury MM, Moura A, Goffinet F, et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis. 2017;17(5):510–9.CrossRef Charlier C, Perrodeau É, Leclercq A, Cazenave B, Pilmis B, Henry B, Lopes A, Maury MM, Moura A, Goffinet F, et al. Clinical features and prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis. 2017;17(5):510–9.CrossRef
10.
go back to reference Dickstein Y, Oster Y, Shimon O, Nesher L, Yahav D, Wiener-Well Y, Cohen R, Ben-Ami R, Weinberger M, Rahav G, et al. Antibiotic treatment for invasive nonpregnancy-associated listeriosis and mortality: a retrospective cohort study. Eur J Clin Microbiol Infect Dis. 2019;38(12):2243–51.CrossRef Dickstein Y, Oster Y, Shimon O, Nesher L, Yahav D, Wiener-Well Y, Cohen R, Ben-Ami R, Weinberger M, Rahav G, et al. Antibiotic treatment for invasive nonpregnancy-associated listeriosis and mortality: a retrospective cohort study. Eur J Clin Microbiol Infect Dis. 2019;38(12):2243–51.CrossRef
11.
go back to reference Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis. 2011;17(1):7–15.CrossRef Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis. 2011;17(1):7–15.CrossRef
12.
go back to reference Gilliss D, Cronquist AB, Cartter M, Tobin-D’Angelo M, Blythe D, Smith K, Lathrop S, Zansky S, Cieslak PR, Dunn J, Holt KG. Incidence and trends of infection with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 US sites, 1996–2012. MMWR Morb Mortal Wkly Rep. 2013;62(15):283–7.PubMedCentral Gilliss D, Cronquist AB, Cartter M, Tobin-D’Angelo M, Blythe D, Smith K, Lathrop S, Zansky S, Cieslak PR, Dunn J, Holt KG. Incidence and trends of infection with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 US sites, 1996–2012. MMWR Morb Mortal Wkly Rep. 2013;62(15):283–7.PubMedCentral
13.
go back to reference European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. Efsa J. 2021;19(2):e06406. European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. Efsa J. 2021;19(2):e06406.
14.
go back to reference Li W, Bai L, Ma X, Zhang X, Li X, Yang X, Huang JY, Fanning S, Guo Y. Sentinel listeriosis surveillance in Selected Hospitals, China, 2013–2017. Emerg Infect Dis. 2019;25(12):2274–7.CrossRef Li W, Bai L, Ma X, Zhang X, Li X, Yang X, Huang JY, Fanning S, Guo Y. Sentinel listeriosis surveillance in Selected Hospitals, China, 2013–2017. Emerg Infect Dis. 2019;25(12):2274–7.CrossRef
15.
go back to reference Wang HL, Ghanem KG, Wang P, Yang S, Li TS. Listeriosis at a Tertiary Care Hospital in Beijing, China: high prevalence of nonclustered healthcare-associated cases among adult patients. Clin Infect Dis. 2013;56(5):666–76.CrossRef Wang HL, Ghanem KG, Wang P, Yang S, Li TS. Listeriosis at a Tertiary Care Hospital in Beijing, China: high prevalence of nonclustered healthcare-associated cases among adult patients. Clin Infect Dis. 2013;56(5):666–76.CrossRef
16.
go back to reference de Noordhout CM, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, Havelaar A, Speybroeck N. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(11):1073–82.CrossRef de Noordhout CM, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, Havelaar A, Speybroeck N. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(11):1073–82.CrossRef
17.
go back to reference Okutani A, Okada Y, Yamamoto S, Igimi S. Nationwide survey of human Listeria monocytogenes infection in Japan. Epidemiol Infect. 2004;132(4):769–72.CrossRef Okutani A, Okada Y, Yamamoto S, Igimi S. Nationwide survey of human Listeria monocytogenes infection in Japan. Epidemiol Infect. 2004;132(4):769–72.CrossRef
18.
go back to reference Huang YT, Ko WC, Chan YJ, Lu JJ, Tsai HY, Liao CH, Sheng WH, Teng LJ, Hsueh PR. Disease burden of invasive listeriosis and molecular characterization of clinical isolates in Taiwan, 2000–2013. PLoS ONE. 2015;10(11):e0141241.CrossRef Huang YT, Ko WC, Chan YJ, Lu JJ, Tsai HY, Liao CH, Sheng WH, Teng LJ, Hsueh PR. Disease burden of invasive listeriosis and molecular characterization of clinical isolates in Taiwan, 2000–2013. PLoS ONE. 2015;10(11):e0141241.CrossRef
19.
go back to reference Choi MH, Park YJ, Kim M, Seo YH, Kim YA, Choi JY, Yong D, Jeong SH, Lee K. Increasing incidence of listeriosis and infection-associated clinical outcomes. Ann Lab Med. 2018;38(2):102–9.CrossRef Choi MH, Park YJ, Kim M, Seo YH, Kim YA, Choi JY, Yong D, Jeong SH, Lee K. Increasing incidence of listeriosis and infection-associated clinical outcomes. Ann Lab Med. 2018;38(2):102–9.CrossRef
20.
go back to reference Angelo KM, Jackson KA, Wong KK, Hoekstra RM, Jackson BR. Assessment of the incubation period for invasive listeriosis. Clin Infect Dis. 2016;63(11):1487–9.CrossRef Angelo KM, Jackson KA, Wong KK, Hoekstra RM, Jackson BR. Assessment of the incubation period for invasive listeriosis. Clin Infect Dis. 2016;63(11):1487–9.CrossRef
21.
go back to reference Goulet V, King LA, Vaillant V, de Valk H. What is the incubation period for listeriosis? BMC Infect Dis. 2013;13:11.CrossRef Goulet V, King LA, Vaillant V, de Valk H. What is the incubation period for listeriosis? BMC Infect Dis. 2013;13:11.CrossRef
22.
go back to reference Mook P, Patel B, Gillespie IA. Risk factors for mortality in non-pregnancy-related listeriosis. Epidemiol Infect. 2012;140(4):706–15.CrossRef Mook P, Patel B, Gillespie IA. Risk factors for mortality in non-pregnancy-related listeriosis. Epidemiol Infect. 2012;140(4):706–15.CrossRef
23.
go back to reference Vasilev V, Japheth R, Andorn N, Yshai R, Agmon V, Gazit E, Kashi Y, Cohen D. A survey of laboratory-confirmed isolates of invasive listeriosis in Israel, 1997–2007. Epidemiol Infect. 2009;137(4):577–80.CrossRef Vasilev V, Japheth R, Andorn N, Yshai R, Agmon V, Gazit E, Kashi Y, Cohen D. A survey of laboratory-confirmed isolates of invasive listeriosis in Israel, 1997–2007. Epidemiol Infect. 2009;137(4):577–80.CrossRef
24.
go back to reference Goulet V, Jacquet C, Martin P, Vaillant V, Laurent E, de Valk H. Surveillance of human listeriosis in France, 2001–2003. Euro Surveill. 2006;11(6):79–81.CrossRef Goulet V, Jacquet C, Martin P, Vaillant V, Laurent E, de Valk H. Surveillance of human listeriosis in France, 2001–2003. Euro Surveill. 2006;11(6):79–81.CrossRef
25.
go back to reference Nakamura H, Tokuda Y, Sono A, Koyama T, Ogasawara J, Hase A, Haruki K, Nishikawa Y. Molecular typing to trace Listeria monocytogenes isolated from cold-smoked fish to a contamination source in a processing plant. J Food Prot. 2006;69(4):835–41.CrossRef Nakamura H, Tokuda Y, Sono A, Koyama T, Ogasawara J, Hase A, Haruki K, Nishikawa Y. Molecular typing to trace Listeria monocytogenes isolated from cold-smoked fish to a contamination source in a processing plant. J Food Prot. 2006;69(4):835–41.CrossRef
26.
go back to reference Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med. 1976;84(3):304–15.CrossRef Fauci AS, Dale DC, Balow JE. Glucocorticosteroid therapy: mechanisms of action and clinical considerations. Ann Intern Med. 1976;84(3):304–15.CrossRef
27.
go back to reference Fan Z, Xie J, Li Y, Wang H. Listeriosis in mainland China: a systematic review. Int J Infect Dis. 2019;81:17–24.CrossRef Fan Z, Xie J, Li Y, Wang H. Listeriosis in mainland China: a systematic review. Int J Infect Dis. 2019;81:17–24.CrossRef
28.
go back to reference Tamburro M, Sammarco ML, Ammendolia MG, Fanelli I, Minelli F, Ripabelli G. Evaluation of transcription levels of inlA, inlB, hly, bsh and prfA genes in Listeria monocytogenes strains using quantitative reverse-transcription PCR and ability of invasion into human CaCo-2 cells. FEMS Microbiol Lett. 2015;362:6.CrossRef Tamburro M, Sammarco ML, Ammendolia MG, Fanelli I, Minelli F, Ripabelli G. Evaluation of transcription levels of inlA, inlB, hly, bsh and prfA genes in Listeria monocytogenes strains using quantitative reverse-transcription PCR and ability of invasion into human CaCo-2 cells. FEMS Microbiol Lett. 2015;362:6.CrossRef
Metadata
Title
The seasonality, steroid use, and lower ratio of neutrophil to lymphocyte associated with bacteremia of Listeria monocytogenes in Japan from 2010 to 2019: a case–control study
Authors
Yusuke Watanabe
Itaru Nakamura
Yuri Miura
Hidehiro Watanabe
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06926-7

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine