Skip to main content
Top
Published in: Indian Journal of Gastroenterology 1/2024

27-02-2024 | Chronic Inflammatory Bowel Disease | Narrative review

A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease

Authors: Amit Yadav, Renu Yadav, Vishal Sharma, Usha Dutta

Published in: Indian Journal of Gastroenterology | Issue 1/2024

Login to get access

Abstract

Inflammatory bowel disease (IBD) is an immune mediated chronic inflammatory disorder of gastrointestinal tract, which has underlying multifactorial pathogenic determinants such as environmental factors, susceptibility genes, gut microbial dysbiosis and a dysregulated immune response. Human gut is a frequent inhabitant of complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi and other microorganisms that have an undisputable role in maintaining balanced homeostasis. All of these microbes interact with immune system and affect human gut physiology either directly or indirectly with interaction of each other. Intestinal fungi represent a smaller but crucial component of the human gut microbiome. Besides interaction with bacteriome and virome, it helps in balancing homoeostasis between pathophysiological and physiological processes, which is often dysregulated in patients with IBD. Understanding of gut mycobiome and its clinical implications are still in in its infancy as opposed to bacterial component of gut microbiome, which is more often focused. Modulation of gut mycobiome represents a novel and promising strategy in the management of patients with IBD. Emerging mycobiome-based therapies such as diet interventions, fecal microbiota transplantation (FMT), probiotics (both fungal and bacterial strains) and antifungals exhibit substantial effects in calibrating the gut mycobiome and restoring dysbalanced immune homeostasis by restoring the core gut mycobiome. In this review, we summarized compositional and functional diversity of the gut mycobiome in healthy individuals and patients with IBD, gut mycobiome dysbiosis in patients with IBD, host immune-fungal interactions and therapeutic role of modulation of intestinal fungi in patients with IBD.
Literature
1.
go back to reference Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19 Suppl A:5A-36A.PubMedCrossRef Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19 Suppl A:5A-36A.PubMedCrossRef
2.
go back to reference Ng SC, Bernstein CN, Vatn MH, et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut. 2013;62:630–49.PubMedCrossRef Ng SC, Bernstein CN, Vatn MH, et al. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut. 2013;62:630–49.PubMedCrossRef
3.
go back to reference Benjamin JL, Hedin CR, Koutsoumpas A, et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis. 2012;18:1092–100.PubMedCrossRef Benjamin JL, Hedin CR, Koutsoumpas A, et al. Smokers with active Crohn’s disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis. 2012;18:1092–100.PubMedCrossRef
5.
go back to reference Wang M, Ahrné S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol. 2005;54:219–31.PubMedCrossRef Wang M, Ahrné S, Jeppsson B, Molin G. Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol. 2005;54:219–31.PubMedCrossRef
7.
go back to reference Iliev ID, Cadwell K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology. 2021;160:1050–66.PubMedCrossRef Iliev ID, Cadwell K. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology. 2021;160:1050–66.PubMedCrossRef
8.
go back to reference Richard ML, Lamas B, Liguori G, Hoffmann TW, Sokol H. Gut fungal microbiota: the Yin and Yang of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:656–65.PubMedCrossRef Richard ML, Lamas B, Liguori G, Hoffmann TW, Sokol H. Gut fungal microbiota: the Yin and Yang of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:656–65.PubMedCrossRef
9.
go back to reference Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as part of the microbiota and interactions with intestinal bacteria. Curr Top Microbiol Immunol. 2019;422:265–301.PubMed Kapitan M, Niemiec MJ, Steimle A, Frick JS, Jacobsen ID. Fungi as part of the microbiota and interactions with intestinal bacteria. Curr Top Microbiol Immunol. 2019;422:265–301.PubMed
13.
go back to reference Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.PubMedPubMedCentralCrossRef Fujimura KE, Sitarik AR, Havstad S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat Med. 2016;22:1187–91.PubMedPubMedCentralCrossRef
15.
go back to reference Liguori G, Lamas B, Richard ML, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohns disease patients. J Crohn’s Colitis. 2016;10:296–305.CrossRef Liguori G, Lamas B, Richard ML, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohns disease patients. J Crohn’s Colitis. 2016;10:296–305.CrossRef
16.
go back to reference Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5:153. Nash AK, Auchtung TA, Wong MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5:153.
17.
go back to reference Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8:e66019. Hoffmann C, Dollive S, Grunberg S, et al. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One. 2013;8:e66019.
18.
go back to reference Wu L, Zeng T, Deligios M, et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. Msphere. 2020;5:e00558-19.PubMedPubMedCentralCrossRef Wu L, Zeng T, Deligios M, et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. Msphere. 2020;5:e00558-19.PubMedPubMedCentralCrossRef
20.
21.
go back to reference Cao Y, Wang L, Ke S, et al. Analysis of intestinal mycobiota of patients with Clostridioides difficile infection among a prospective inpatient cohort. Microbiol Spectr. 2022;10:e0136222.PubMedCrossRef Cao Y, Wang L, Ke S, et al. Analysis of intestinal mycobiota of patients with Clostridioides difficile infection among a prospective inpatient cohort. Microbiol Spectr. 2022;10:e0136222.PubMedCrossRef
22.
23.
go back to reference Jeziorek M, Frej-Mądrzak M, Choroszy-Król I. The influence of diet on gastrointestinal Candida spp. colonization and the susceptibility of Candida spp. to antifungal drugs. Rocz Panstw Zakl Hig. 2019;70:195–200.PubMedCrossRef Jeziorek M, Frej-Mądrzak M, Choroszy-Król I. The influence of diet on gastrointestinal Candida spp. colonization and the susceptibility of Candida spp. to antifungal drugs. Rocz Panstw Zakl Hig. 2019;70:195–200.PubMedCrossRef
24.
go back to reference David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.ADSPubMedCrossRef David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.ADSPubMedCrossRef
25.
27.
go back to reference Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37:97–106.PubMedCrossRef Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37:97–106.PubMedCrossRef
28.
go back to reference Limon JJ, Tang J, Li D, et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019;25:377-88.e6.PubMedPubMedCentralCrossRef Limon JJ, Tang J, Li D, et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019;25:377-88.e6.PubMedPubMedCentralCrossRef
29.
go back to reference Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 2016;17:217.PubMedPubMedCentralCrossRef Debelius J, Song SJ, Vazquez-Baeza Y, Xu ZZ, Gonzalez A, Knight R. Tiny microbes, enormous impacts: what matters in gut microbiome studies? Genome Biol. 2016;17:217.PubMedPubMedCentralCrossRef
30.
go back to reference Huseyin CE, Rubio RC, O’Sullivan O, Cotter PD, Scanlan PD. The fungal frontier: a comparative analysis of methods used in the study of the human gut mycobiome. Front Microbiol. 2017;8:1432.PubMedPubMedCentralCrossRef Huseyin CE, Rubio RC, O’Sullivan O, Cotter PD, Scanlan PD. The fungal frontier: a comparative analysis of methods used in the study of the human gut mycobiome. Front Microbiol. 2017;8:1432.PubMedPubMedCentralCrossRef
31.
go back to reference Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective. Mycologia. 2015;107:1057–73.PubMedCrossRef Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective. Mycologia. 2015;107:1057–73.PubMedCrossRef
32.
go back to reference Angebault C, Ghozlane A, Volant S, Botterel F, d’Enfert C, Bougnoux ME. Combined bacterial and fungal intestinal microbiota analyses: impact of storage conditions and DNA extraction protocols. PLoS One. 2018;13:e0201174. Angebault C, Ghozlane A, Volant S, Botterel F, d’Enfert C, Bougnoux ME. Combined bacterial and fungal intestinal microbiota analyses: impact of storage conditions and DNA extraction protocols. PLoS One. 2018;13:e0201174.
33.
go back to reference Fiedorová K, Radvanský M, Němcová E, et al. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Front Microbiol. 2019;10:821.PubMedPubMedCentralCrossRef Fiedorová K, Radvanský M, Němcová E, et al. The impact of DNA extraction methods on stool bacterial and fungal microbiota community recovery. Front Microbiol. 2019;10:821.PubMedPubMedCentralCrossRef
34.
go back to reference Sugiyama M, Xie XY, Atomi Y, Saito M. Differential diagnosis of small polypoid lesions of the gallbladder: the value of endoscopic ultrasonography. Ann Surg. 1999;229:498–504.PubMedPubMedCentralCrossRef Sugiyama M, Xie XY, Atomi Y, Saito M. Differential diagnosis of small polypoid lesions of the gallbladder: the value of endoscopic ultrasonography. Ann Surg. 1999;229:498–504.PubMedPubMedCentralCrossRef
35.
go back to reference Tedersoo L, Anslan S, Bahram M, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 2015;10:1–43.CrossRef Tedersoo L, Anslan S, Bahram M, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys. 2015;10:1–43.CrossRef
36.
go back to reference Barfod KK, Poulsen SS, Hammer M, Larsen ST. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice. BMC Microbiol. 2010;10:233.PubMedPubMedCentralCrossRef Barfod KK, Poulsen SS, Hammer M, Larsen ST. Sub-chronic lung inflammation after airway exposures to Bacillus thuringiensis biopesticides in mice. BMC Microbiol. 2010;10:233.PubMedPubMedCentralCrossRef
37.
go back to reference Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109.PubMedCrossRef Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17:95–109.PubMedCrossRef
38.
go back to reference Tiew PY, Mac Aogain M, Ali NABM, et al. The mycobiome in health and disease: emerging concepts, methodologies and challenges. Mycopathologia. 2020;185:207–31.PubMedPubMedCentral Tiew PY, Mac Aogain M, Ali NABM, et al. The mycobiome in health and disease: emerging concepts, methodologies and challenges. Mycopathologia. 2020;185:207–31.PubMedPubMedCentral
39.
go back to reference Lindahl BD, Nilsson RH, Tedersoo L, et al. Fungal community analysis by high-throughput sequencing of amplified markers–a user’s guide. New Phytol. 2013;199:288–99.PubMedPubMedCentralCrossRef Lindahl BD, Nilsson RH, Tedersoo L, et al. Fungal community analysis by high-throughput sequencing of amplified markers–a user’s guide. New Phytol. 2013;199:288–99.PubMedPubMedCentralCrossRef
40.
41.
go back to reference Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online. 2016;12 Suppl 1:5–16. Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinform Online. 2016;12 Suppl 1:5–16.
42.
go back to reference Marcelino VR, Irinyi L, Eden JS, Meyer W, Holmes EC, Sorrell TC. Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities–a proof of concept under laboratory conditions. IMA Fungus. 2019;10:12.PubMedPubMedCentralCrossRef Marcelino VR, Irinyi L, Eden JS, Meyer W, Holmes EC, Sorrell TC. Metatranscriptomics as a tool to identify fungal species and subspecies in mixed communities–a proof of concept under laboratory conditions. IMA Fungus. 2019;10:12.PubMedPubMedCentralCrossRef
43.
go back to reference Thielemann N, Herz M, Kurzai O, Martin R. Analyzing the human gut mycobiome - A short guide for beginners. Comput Struct Biotechnol J. 2022;20:608–14.PubMedPubMedCentralCrossRef Thielemann N, Herz M, Kurzai O, Martin R. Analyzing the human gut mycobiome - A short guide for beginners. Comput Struct Biotechnol J. 2022;20:608–14.PubMedPubMedCentralCrossRef
44.
go back to reference Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.PubMedCrossRef Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.PubMedCrossRef
45.
go back to reference Flynn JM, Brown EA, Chain FJ, MacIsaac HJ, Cristescu ME. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol Evol. 2015;5:2252–66.PubMedPubMedCentralCrossRef Flynn JM, Brown EA, Chain FJ, MacIsaac HJ, Cristescu ME. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol Evol. 2015;5:2252–66.PubMedPubMedCentralCrossRef
46.
go back to reference Westcott SL, Schloss PD. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ. 2015;3:e1487.PubMedPubMedCentralCrossRef Westcott SL, Schloss PD. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ. 2015;3:e1487.PubMedPubMedCentralCrossRef
47.
go back to reference Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44:846–9.CrossRef Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44:846–9.CrossRef
48.
go back to reference Kõljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.PubMedCrossRef Kõljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22:5271–7.PubMedCrossRef
49.
go back to reference Nilsson RH, Hyde KD, Pawłowska J, et al. Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity. 2014;67:11–9.CrossRef Nilsson RH, Hyde KD, Pawłowska J, et al. Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity. 2014;67:11–9.CrossRef
50.
go back to reference Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.ADSPubMedPubMedCentralCrossRef Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.ADSPubMedPubMedCentralCrossRef
51.
go back to reference Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44:2933–41.PubMedPubMedCentralCrossRef Paulino LC, Tseng CH, Strober BE, Blaser MJ. Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol. 2006;44:2933–41.PubMedPubMedCentralCrossRef
52.
go back to reference Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.PubMedCrossRef Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.PubMedCrossRef
53.
go back to reference Wijayawardene NN, Bahram M, Sánchez-Castro I, et al. Current insight into culture-dependent and culture-independent methods in discovering Ascomycetous Taxa. J Fungi (Basel). 2021;7:703.PubMedCrossRef Wijayawardene NN, Bahram M, Sánchez-Castro I, et al. Current insight into culture-dependent and culture-independent methods in discovering Ascomycetous Taxa. J Fungi (Basel). 2021;7:703.PubMedCrossRef
54.
go back to reference Soeta N, Terashima M, Gotoh M, et al. An improved rapid quantitative detection and identification method for a wide range of fungi. J Med Microbiol. 2009;58 Pt 8:1037–44.CrossRef Soeta N, Terashima M, Gotoh M, et al. An improved rapid quantitative detection and identification method for a wide range of fungi. J Med Microbiol. 2009;58 Pt 8:1037–44.CrossRef
56.
go back to reference Kombrink A, Tayyrov A, Essig A, et al. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. ISME J. 2019;13:588–602.PubMedCrossRef Kombrink A, Tayyrov A, Essig A, et al. Induction of antibacterial proteins and peptides in the coprophilous mushroom Coprinopsis cinerea in response to bacteria. ISME J. 2019;13:588–602.PubMedCrossRef
57.
go back to reference Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol. 2020;10:105. Fernández de Ullivarri M, Arbulu S, Garcia-Gutierrez E, Cotter PD. Antifungal peptides as therapeutic agents. Front Cell Infect Microbiol. 2020;10:105.
58.
go back to reference Lambooij JM, Hoogenkamp MA, Brandt BW, Janus MM, Krom BP. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria. Fungal Genet Biol. 2017;109:1–6.PubMedCrossRef Lambooij JM, Hoogenkamp MA, Brandt BW, Janus MM, Krom BP. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria. Fungal Genet Biol. 2017;109:1–6.PubMedCrossRef
61.
go back to reference Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe. 2022;3:e969–83. Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe. 2022;3:e969–83.
62.
go back to reference Hsu C, Ghannoum M, Cominelli F, et al. Mycobiome and inflammatory bowel disease: role in disease pathogenesis, current approaches and novel nutritional-based therapies. Inflamm Bowel Dis. 2023;29:470–9. Hsu C, Ghannoum M, Cominelli F, et al. Mycobiome and inflammatory bowel disease: role in disease pathogenesis, current approaches and novel nutritional-based therapies. Inflamm Bowel Dis. 2023;29:470–9.
63.
go back to reference Ott SJ, Kühbacher T, Musfeldt M, et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol. 2008;43:831–41.PubMedCrossRef Ott SJ, Kühbacher T, Musfeldt M, et al. Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol. 2008;43:831–41.PubMedCrossRef
65.
66.
go back to reference Doron I, Mesko M, Li XV, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol. 2021;6:1493–504.PubMedPubMedCentralCrossRef Doron I, Mesko M, Li XV, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol. 2021;6:1493–504.PubMedPubMedCentralCrossRef
67.
go back to reference Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.PubMedPubMedCentralCrossRef Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.PubMedPubMedCentralCrossRef
70.
go back to reference Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–8.PubMedCrossRef Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–8.PubMedCrossRef
71.
go back to reference Sougioultzis S, Simeonidis S, Bhaskar KR, et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem Biophys Res Commun. 2006;343:69–76.PubMedCrossRef Sougioultzis S, Simeonidis S, Bhaskar KR, et al. Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-κB-mediated IL-8 gene expression. Biochem Biophys Res Commun. 2006;343:69–76.PubMedCrossRef
72.
go back to reference Dahan S, Dalmasso G, Imbert V, Peyron JF, Rampal P, Czerucka D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect Immun. 2003;71:766–73.PubMedPubMedCentralCrossRef Dahan S, Dalmasso G, Imbert V, Peyron JF, Rampal P, Czerucka D. Saccharomyces boulardii interferes with enterohemorrhagic Escherichia coli-induced signaling pathways in T84 cells. Infect Immun. 2003;71:766–73.PubMedPubMedCentralCrossRef
73.
go back to reference Dalmasso G, Cottrez F, Imbert V, et al. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology. 2006;131:1812–25.PubMedCrossRef Dalmasso G, Cottrez F, Imbert V, et al. Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterology. 2006;131:1812–25.PubMedCrossRef
74.
go back to reference Jawhara S, Poulain D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med Mycol. 2007;45:691–700.PubMedCrossRef Jawhara S, Poulain D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med Mycol. 2007;45:691–700.PubMedCrossRef
76.
go back to reference Chehoud C, Albenberg LG, Judge C, et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1948–56.PubMedCrossRef Chehoud C, Albenberg LG, Judge C, et al. Fungal signature in the gut microbiota of pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1948–56.PubMedCrossRef
77.
go back to reference Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol. 2014;48:513–23.PubMedPubMedCentralCrossRef Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol. 2014;48:513–23.PubMedPubMedCentralCrossRef
78.
79.
go back to reference Jun X, Ning C, Yang S, et al. Alteration of fungal microbiota after 5-ASA treatment in UC patients. Inflamm Bowel Dis. 2020;26:380–90.PubMedCrossRef Jun X, Ning C, Yang S, et al. Alteration of fungal microbiota after 5-ASA treatment in UC patients. Inflamm Bowel Dis. 2020;26:380–90.PubMedCrossRef
81.
go back to reference Hsia K, Zhao N, Chung M, et al. Alterations in the fungal microbiome in ulcerative colitis. Inflamm Bowel Dis. 2023;29:1613–21.PubMedCrossRef Hsia K, Zhao N, Chung M, et al. Alterations in the fungal microbiome in ulcerative colitis. Inflamm Bowel Dis. 2023;29:1613–21.PubMedCrossRef
82.
go back to reference Jangi S, Hsia K, Zhao N, et al. Dynamics of the gut mycobiome in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2023:S1542-3565(23)00762-0. Jangi S, Hsia K, Zhao N, et al. Dynamics of the gut mycobiome in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2023:S1542-3565(23)00762-0.
83.
go back to reference Krawczyk A, Salamon D, Kowalska-Duplaga K, et al. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn’s disease. World J Gastroenterol. 2023;29:2172–87.PubMedPubMedCentralCrossRef Krawczyk A, Salamon D, Kowalska-Duplaga K, et al. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of Crohn’s disease. World J Gastroenterol. 2023;29:2172–87.PubMedPubMedCentralCrossRef
84.
go back to reference Gross O, Poeck H, Bscheider M, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459:433–6.ADSPubMedCrossRef Gross O, Poeck H, Bscheider M, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459:433–6.ADSPubMedCrossRef
85.
go back to reference Hise AG, Tomalka J, Ganesan S, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97.PubMedPubMedCentralCrossRef Hise AG, Tomalka J, Ganesan S, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97.PubMedPubMedCentralCrossRef
86.
go back to reference Hager CL, Isham N, Schrom KP, et al. Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms. mBio. 2019;10:e00338–19. Hager CL, Isham N, Schrom KP, et al. Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms. mBio. 2019;10:e00338–19.
87.
go back to reference Di Martino L, De Salvo C, Buela KA, et al. Candida tropicalis infection modulates the gut microbiome and confers enhanced susceptibility to colitis in mice. Cell Mol Gastroenterol Hepatol. 2022;13:901–23.PubMedCrossRef Di Martino L, De Salvo C, Buela KA, et al. Candida tropicalis infection modulates the gut microbiome and confers enhanced susceptibility to colitis in mice. Cell Mol Gastroenterol Hepatol. 2022;13:901–23.PubMedCrossRef
88.
go back to reference Li W, Shu Y, Zhang J, et al. Long-term prednisone treatment causes fungal microbiota dysbiosis and alters the ecological interaction between gut mycobiome and bacteriome in rats. Front Microbiol. 2023;14:1112767.PubMedPubMedCentralCrossRef Li W, Shu Y, Zhang J, et al. Long-term prednisone treatment causes fungal microbiota dysbiosis and alters the ecological interaction between gut mycobiome and bacteriome in rats. Front Microbiol. 2023;14:1112767.PubMedPubMedCentralCrossRef
89.
90.
go back to reference Wang S, Zhang Y-R, Yu Y-B. The important role of fungi in inflammatory bowel diseases. Scand J Gastroenterol. 2021;56:1312–22.PubMedCrossRef Wang S, Zhang Y-R, Yu Y-B. The important role of fungi in inflammatory bowel diseases. Scand J Gastroenterol. 2021;56:1312–22.PubMedCrossRef
91.
go back to reference Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.PubMedPubMedCentralCrossRef Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.PubMedPubMedCentralCrossRef
92.
go back to reference Schirbel A, Shouval DS, Hebecker B, Hube B, Sturm A, Werner L. Intestinal epithelial cells and T cells differentially recognize and respond to Candida albicans yeast and hypha. Eur J Immunol. 2018;48:1826–37.PubMedCrossRef Schirbel A, Shouval DS, Hebecker B, Hube B, Sturm A, Werner L. Intestinal epithelial cells and T cells differentially recognize and respond to Candida albicans yeast and hypha. Eur J Immunol. 2018;48:1826–37.PubMedCrossRef
93.
go back to reference Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med. 2017;9:eaaf9044.PubMedPubMedCentralCrossRef Chiaro TR, Soto R, Zac Stephens W, et al. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Sci Transl Med. 2017;9:eaaf9044.PubMedPubMedCentralCrossRef
95.
go back to reference Chikina AS, Nadalin F, Maurin M, et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell. 2020;183:411–28.e16. Chikina AS, Nadalin F, Maurin M, et al. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell. 2020;183:411–28.e16.
96.
go back to reference Di Paola M, Rizzetto L, Stefanini I, et al. Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn’s disease patients and their interactions with the gut microbiome. J Transl Autoimmun. 2020;3:100036.PubMedPubMedCentralCrossRef Di Paola M, Rizzetto L, Stefanini I, et al. Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn’s disease patients and their interactions with the gut microbiome. J Transl Autoimmun. 2020;3:100036.PubMedPubMedCentralCrossRef
97.
go back to reference Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6:67–78.PubMedCrossRef Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6:67–78.PubMedCrossRef
98.
go back to reference Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.PubMedCrossRef Zelante T, De Luca A, Bonifazi P, et al. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol. 2007;37:2695–706.PubMedCrossRef
99.
go back to reference Duarte-Silva M, Afonso PC, de Souza PR, et al. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn’s disease. Autoimmunity. 2019;52:37–47.PubMedCrossRef Duarte-Silva M, Afonso PC, de Souza PR, et al. Reappraisal of antibodies against Saccharomyces cerevisiae (ASCA) as persistent biomarkers in quiescent Crohn’s disease. Autoimmunity. 2019;52:37–47.PubMedCrossRef
100.
go back to reference Pérez T, Balcázar JL, Ruiz-Zarzuela I, et al. Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010;3:355–60.PubMedCrossRef Pérez T, Balcázar JL, Ruiz-Zarzuela I, et al. Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010;3:355–60.PubMedCrossRef
101.
go back to reference Seow CH, Stempak JM, Xu W, et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am J Gastroenterol. 2009;104:1426–34.PubMedCrossRef Seow CH, Stempak JM, Xu W, et al. Novel anti-glycan antibodies related to inflammatory bowel disease diagnosis and phenotype. Am J Gastroenterol. 2009;104:1426–34.PubMedCrossRef
103.
go back to reference Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecology. 2015;15:9–17. Hallen-Adams HE, Kachman SD, Kim J, Legge RM, Martínez I. Fungi inhabiting the healthy human gastrointestinal tract: a diverse and dynamic community. Fungal Ecology. 2015;15:9–17.
104.
go back to reference Suhr MJ, Banjara N, Hallen-Adams HE. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol. 2016;62:209–15.PubMedCrossRef Suhr MJ, Banjara N, Hallen-Adams HE. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol. 2016;62:209–15.PubMedCrossRef
106.
go back to reference Kostovcikova K, Coufal S, Galanova N, et al. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. Front Immunol. 2019;10:919.PubMedPubMedCentralCrossRef Kostovcikova K, Coufal S, Galanova N, et al. Diet rich in animal protein promotes pro-inflammatory macrophage response and exacerbates colitis in mice. Front Immunol. 2019;10:919.PubMedPubMedCentralCrossRef
107.
go back to reference Lam S, Zuo T, Ho M, Chan FKL, Chan PKS, Ng SC. Fungal alterations in inflammatory bowel diseases. Aliment Pharmacol Ther. 2019;50:1159–71.PubMedCrossRef Lam S, Zuo T, Ho M, Chan FKL, Chan PKS, Ng SC. Fungal alterations in inflammatory bowel diseases. Aliment Pharmacol Ther. 2019;50:1159–71.PubMedCrossRef
108.
go back to reference Lewis JD, Chen EZ, Baldassano RN, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe. 2015;18:489–500.PubMedPubMedCentralCrossRef Lewis JD, Chen EZ, Baldassano RN, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe. 2015;18:489–500.PubMedPubMedCentralCrossRef
109.
go back to reference Sun Y, Zuo T, Cheung CP, et al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China. Gastroenterology. 2021;160:272-86. e11. Sun Y, Zuo T, Cheung CP, et al. Population-level configurations of gut mycobiome across 6 ethnicities in urban and rural China. Gastroenterology. 2021;160:272-86. e11.
110.
go back to reference Tannock GW, Liu Y. Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. J R Soc N Z. 2020;50:434–55.CrossRef Tannock GW, Liu Y. Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. J R Soc N Z. 2020;50:434–55.CrossRef
111.
go back to reference Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9:8872.ADSPubMedPubMedCentralCrossRef Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9:8872.ADSPubMedPubMedCentralCrossRef
112.
go back to reference Ghannoum M, Smith C, Adamson E, Isham N, Salem I, Retuerto M. Effect of mycobiome diet on gut fungal and bacterial communities of healthy adults. J Prob Health. 2019;7:215. Ghannoum M, Smith C, Adamson E, Isham N, Salem I, Retuerto M. Effect of mycobiome diet on gut fungal and bacterial communities of healthy adults. J Prob Health. 2019;7:215.
113.
go back to reference Klassert TE, Hanisch A, Bräuer J, et al. Modulatory role of vitamin A on the C andida albicans-induced immune response in human monocytes. Med Microbiol Immunol. 2014;203:415–24.PubMedPubMedCentralCrossRef Klassert TE, Hanisch A, Bräuer J, et al. Modulatory role of vitamin A on the C andida albicans-induced immune response in human monocytes. Med Microbiol Immunol. 2014;203:415–24.PubMedPubMedCentralCrossRef
114.
go back to reference Bouzid D, Merzouki S, Bachiri M, Ailane SE, Zerroug MM. Vitamin D3 a new drug against Candida albicans. J Mycol Med. 2017;27:79–82.PubMedCrossRef Bouzid D, Merzouki S, Bachiri M, Ailane SE, Zerroug MM. Vitamin D3 a new drug against Candida albicans. J Mycol Med. 2017;27:79–82.PubMedCrossRef
115.
go back to reference Xie J, Zhu L, Zhu T, et al. Zinc supplementation reduces Candida infections in pediatric intensive care unit: a randomized placebo-controlled clinical trial. J Clin Biochem Nutr. 2019;64:170–3.PubMedCrossRef Xie J, Zhu L, Zhu T, et al. Zinc supplementation reduces Candida infections in pediatric intensive care unit: a randomized placebo-controlled clinical trial. J Clin Biochem Nutr. 2019;64:170–3.PubMedCrossRef
116.
go back to reference Baunwall SMD, Lee MM, Eriksen MK, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine. 2020;29–30:100642.PubMedPubMedCentralCrossRef Baunwall SMD, Lee MM, Eriksen MK, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an updated systematic review and meta-analysis. EClinicalMedicine. 2020;29–30:100642.PubMedPubMedCentralCrossRef
117.
go back to reference Mullish BH, Quraishi MN, Segal JP, et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut. 2018;67:1920–41.PubMedCrossRef Mullish BH, Quraishi MN, Segal JP, et al. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridium difficile infection and other potential indications: joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut. 2018;67:1920–41.PubMedCrossRef
118.
go back to reference Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.ADSPubMedPubMedCentralCrossRef Zuo T, Wong SH, Cheung CP, et al. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat Commun. 2018;9:3663.ADSPubMedPubMedCentralCrossRef
119.
go back to reference Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102-9. e6.PubMedCrossRef Moayyedi P, Surette MG, Kim PT, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015;149:102-9. e6.PubMedCrossRef
120.
go back to reference Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28.PubMedCrossRef Paramsothy S, Kamm MA, Kaakoush NO, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389:1218–28.PubMedCrossRef
121.
go back to reference Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321:156–64.PubMedPubMedCentralCrossRef Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321:156–64.PubMedPubMedCentralCrossRef
122.
go back to reference Haifer C, Paramsothy S, Kaakoush NO, et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol. 2022;7:141–51.PubMedCrossRef Haifer C, Paramsothy S, Kaakoush NO, et al. Lyophilised oral faecal microbiota transplantation for ulcerative colitis (LOTUS): a randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol Hepatol. 2022;7:141–51.PubMedCrossRef
123.
go back to reference Tan XY, Xie YJ, Liu XL, Li XY, Jia B. A systematic review and meta-analysis of randomized controlled trials of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Evid Based Complement Alternat Med. 2022;2022:8266793.PubMedPubMedCentralCrossRef Tan XY, Xie YJ, Liu XL, Li XY, Jia B. A systematic review and meta-analysis of randomized controlled trials of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Evid Based Complement Alternat Med. 2022;2022:8266793.PubMedPubMedCentralCrossRef
124.
go back to reference Feng J, Chen Y, Liu Y, et al. Efficacy and safety of fecal microbiota transplantation in the treatment of ulcerative colitis: a systematic review and meta-analysis. Sci Rep. 2023;13:14494.ADSPubMedPubMedCentralCrossRef Feng J, Chen Y, Liu Y, et al. Efficacy and safety of fecal microbiota transplantation in the treatment of ulcerative colitis: a systematic review and meta-analysis. Sci Rep. 2023;13:14494.ADSPubMedPubMedCentralCrossRef
125.
126.
go back to reference Lam S, Bai X, Shkoporov AN, et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol. 2022;7:472–84.PubMedCrossRef Lam S, Bai X, Shkoporov AN, et al. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol. 2022;7:472–84.PubMedCrossRef
127.
go back to reference Leonardi I, Paramsothy S, Doron I, et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe. 2020;27:823-9.e3. Leonardi I, Paramsothy S, Doron I, et al. Fungal trans-kingdom dynamics linked to responsiveness to fecal microbiota transplantation (FMT) therapy in ulcerative colitis. Cell Host Microbe. 2020;27:823-9.e3.
128.
go back to reference Standaert-Vitse A, Sendid B, Joossens M, et al. Candida albicanscolonization and ASCA in familial Crohn’s disease. Am J Gastroenterol. 2009;104:1745–53.PubMedCrossRef Standaert-Vitse A, Sendid B, Joossens M, et al. Candida albicanscolonization and ASCA in familial Crohn’s disease. Am J Gastroenterol. 2009;104:1745–53.PubMedCrossRef
129.
130.
go back to reference Qiu X, Ma J, Jiao C, et al. Alterations in the mucosa-associated fungal microbiota in patients with ulcerative colitis. Oncotarget. 2017;8:107577–88.PubMedPubMedCentralCrossRef Qiu X, Ma J, Jiao C, et al. Alterations in the mucosa-associated fungal microbiota in patients with ulcerative colitis. Oncotarget. 2017;8:107577–88.PubMedPubMedCentralCrossRef
131.
go back to reference El Mouzan MI, Korolev KS, Al Mofarreh MA, et al. Fungal dysbiosis predicts the diagnosis of pediatric Crohn’s disease. World J Gastroenterol. 2018;24:4510–6.PubMedPubMedCentralCrossRef El Mouzan MI, Korolev KS, Al Mofarreh MA, et al. Fungal dysbiosis predicts the diagnosis of pediatric Crohn’s disease. World J Gastroenterol. 2018;24:4510–6.PubMedPubMedCentralCrossRef
132.
go back to reference Imai T, Inoue R, Kawada Y, et al. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2019;54:149–59.PubMedCrossRef Imai T, Inoue R, Kawada Y, et al. Characterization of fungal dysbiosis in Japanese patients with inflammatory bowel disease. J Gastroenterol. 2019;54:149–59.PubMedCrossRef
133.
go back to reference Qiu X, Zhao X, Cui X, et al. Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn’s disease. Therap Adv Gastroenterol. 2020;13:1756284820971202.PubMedPubMedCentralCrossRef Qiu X, Zhao X, Cui X, et al. Characterization of fungal and bacterial dysbiosis in young adult Chinese patients with Crohn’s disease. Therap Adv Gastroenterol. 2020;13:1756284820971202.PubMedPubMedCentralCrossRef
134.
go back to reference Nelson A, Stewart CJ, Kennedy NA, et al. The Impact of NOD2 genetic variants on the gut mycobiota in Crohn’s disease patients in remission and in individuals without gastrointestinal inflammation. J Crohns Colitis. 2021;15:800–12.PubMedCrossRef Nelson A, Stewart CJ, Kennedy NA, et al. The Impact of NOD2 genetic variants on the gut mycobiota in Crohn’s disease patients in remission and in individuals without gastrointestinal inflammation. J Crohns Colitis. 2021;15:800–12.PubMedCrossRef
135.
go back to reference Zeng L, Feng Z, Zhuo M, et al. Fecal fungal microbiota alterations associated with clinical phenotypes in Crohn’s disease in southwest China. PeerJ. 2022;10:e14260.PubMedPubMedCentralCrossRef Zeng L, Feng Z, Zhuo M, et al. Fecal fungal microbiota alterations associated with clinical phenotypes in Crohn’s disease in southwest China. PeerJ. 2022;10:e14260.PubMedPubMedCentralCrossRef
136.
go back to reference Tursi A, Brandimarte G, Papa A, et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL# 3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2010;105:2218–27.PubMedPubMedCentralCrossRef Tursi A, Brandimarte G, Papa A, et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL# 3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2010;105:2218–27.PubMedPubMedCentralCrossRef
137.
go back to reference Sivananthan K, Petersen AM. Review of Saccharomyces boulardii as a treatment option in IBD. Immunopharmacol Immunotoxicol. 2018;40:465–75.PubMedCrossRef Sivananthan K, Petersen AM. Review of Saccharomyces boulardii as a treatment option in IBD. Immunopharmacol Immunotoxicol. 2018;40:465–75.PubMedCrossRef
138.
go back to reference Canonici A, Pellegrino E, Siret C, et al. Saccharomyces boulardii improves intestinal epithelial cell restitution by inhibiting αvβ5 integrin activation state. PLoS One. 2012;7:e45047.ADSPubMedPubMedCentralCrossRef Canonici A, Pellegrino E, Siret C, et al. Saccharomyces boulardii improves intestinal epithelial cell restitution by inhibiting αvβ5 integrin activation state. PLoS One. 2012;7:e45047.ADSPubMedPubMedCentralCrossRef
139.
go back to reference Sen S, Mansell TJ. Yeasts as probiotics: mechanisms, outcomes, and future potential. Fungal Genet Biol. 2020;137:103333.PubMedCrossRef Sen S, Mansell TJ. Yeasts as probiotics: mechanisms, outcomes, and future potential. Fungal Genet Biol. 2020;137:103333.PubMedCrossRef
140.
go back to reference Thomas S, Metzke D, Schmitz J, Dörffel Y, Baumgart DC. Anti-inflammatory effects of Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn’s disease and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1083-92.PubMedCrossRef Thomas S, Metzke D, Schmitz J, Dörffel Y, Baumgart DC. Anti-inflammatory effects of Saccharomyces boulardii mediated by myeloid dendritic cells from patients with Crohn’s disease and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1083-92.PubMedCrossRef
141.
go back to reference Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol. 2003;15:697–8.PubMedCrossRef Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol. 2003;15:697–8.PubMedCrossRef
142.
go back to reference Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci. 2000;45:1462–4.PubMedCrossRef Guslandi M, Mezzi G, Sorghi M, Testoni PA. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig Dis Sci. 2000;45:1462–4.PubMedCrossRef
143.
go back to reference De Lourdes De Abreu Ferrari M, Sales Da Cunha A. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol. 2008;43:842–8. De Lourdes De Abreu Ferrari M, Sales Da Cunha A. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand J Gastroenterol. 2008;43:842–8.
144.
go back to reference Bourreille A, Cadiot G, Le Dreau G, et al. Saccharomyces boulardii does not prevent relapse of Crohn’s disease. Clin Gastroenterol Hepatol. 2013;11:982–7.PubMedCrossRef Bourreille A, Cadiot G, Le Dreau G, et al. Saccharomyces boulardii does not prevent relapse of Crohn’s disease. Clin Gastroenterol Hepatol. 2013;11:982–7.PubMedCrossRef
145.
go back to reference Ghannoum MA, McCormick TS, Retuerto M, et al. Evaluation of microbiome alterations following consumption of BIOHM, a novel probiotic. Curr Issues Mol Biol. 2021;43:2135–46.PubMedPubMedCentralCrossRef Ghannoum MA, McCormick TS, Retuerto M, et al. Evaluation of microbiome alterations following consumption of BIOHM, a novel probiotic. Curr Issues Mol Biol. 2021;43:2135–46.PubMedPubMedCentralCrossRef
146.
go back to reference Di Martino L, Osme A, Ghannoum M, Cominelli F. A novel probiotic combination ameliorates Crohn’s disease–like ileitis by increasing short-chain fatty acid production and modulating essential adaptive immune pathways. Inflamm Bowel Dis. 2023;29:1105–17. Di Martino L, Osme A, Ghannoum M, Cominelli F. A novel probiotic combination ameliorates Crohn’s disease–like ileitis by increasing short-chain fatty acid production and modulating essential adaptive immune pathways. Inflamm Bowel Dis. 2023;29:1105–17.
147.
go back to reference Huo X, Li D, Wu F, et al. Cultivated human intestinal fungus Candida metapsilosis M2006B attenuates colitis by secreting acyclic sesquiterpenoids as FXR agonists. Gut. 2022;71:2205–17.PubMedCrossRef Huo X, Li D, Wu F, et al. Cultivated human intestinal fungus Candida metapsilosis M2006B attenuates colitis by secreting acyclic sesquiterpenoids as FXR agonists. Gut. 2022;71:2205–17.PubMedCrossRef
148.
149.
go back to reference Scott BM, Gutiérrez-Vázquez C, Sanmarco LM, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med. 2021;27:1212–22. Scott BM, Gutiérrez-Vázquez C, Sanmarco LM, et al. Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nat Med. 2021;27:1212–22.
150.
go back to reference Bhaskaran N, Quigley C, Paw C, et al. Role of short chain fatty acids in controlling tregs and immunopathology during mucosal infection. Front Microbiol. 2018;9:1995.PubMedPubMedCentralCrossRef Bhaskaran N, Quigley C, Paw C, et al. Role of short chain fatty acids in controlling tregs and immunopathology during mucosal infection. Front Microbiol. 2018;9:1995.PubMedPubMedCentralCrossRef
151.
go back to reference Lührs H, Gerke T, Müller JG, et al. Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol. 2002;37:458–66.PubMedCrossRef Lührs H, Gerke T, Müller JG, et al. Butyrate inhibits NF-κB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol. 2002;37:458–66.PubMedCrossRef
152.
go back to reference Jena A, Dutta U, Shah J, et al. Oral fluconazole therapy in patients with active ulcerative colitis who have detectable candida in the stool: a double-blind randomized placebo-controlled trial. J Clin Gastroenterol. 2022;56:705–11.PubMedCrossRef Jena A, Dutta U, Shah J, et al. Oral fluconazole therapy in patients with active ulcerative colitis who have detectable candida in the stool: a double-blind randomized placebo-controlled trial. J Clin Gastroenterol. 2022;56:705–11.PubMedCrossRef
153.
go back to reference Sendid B, Salvetat N, Sarter H, et al. A pilot clinical study on post-operative recurrence provides biological clues for a role of Candida yeasts and fluconazole in Crohn’s disease. J Fungi (Basel). 2021;7:324.PubMedCrossRef Sendid B, Salvetat N, Sarter H, et al. A pilot clinical study on post-operative recurrence provides biological clues for a role of Candida yeasts and fluconazole in Crohn’s disease. J Fungi (Basel). 2021;7:324.PubMedCrossRef
154.
go back to reference Zwolińska-Wcisło M, Sliwowski Z, Drozdowicz D, et al. Candidiasis in the experimental model of ulcerative colitis. Folia Med Cracov. 2007;48:71–84.PubMed Zwolińska-Wcisło M, Sliwowski Z, Drozdowicz D, et al. Candidiasis in the experimental model of ulcerative colitis. Folia Med Cracov. 2007;48:71–84.PubMed
Metadata
Title
A comprehensive guide to assess gut mycobiome and its role in pathogenesis and treatment of inflammatory bowel disease
Authors
Amit Yadav
Renu Yadav
Vishal Sharma
Usha Dutta
Publication date
27-02-2024
Publisher
Springer India
Published in
Indian Journal of Gastroenterology / Issue 1/2024
Print ISSN: 0254-8860
Electronic ISSN: 0975-0711
DOI
https://doi.org/10.1007/s12664-023-01510-0

Other articles of this Issue 1/2024

Indian Journal of Gastroenterology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine