Skip to main content
Top
Published in: Digestive Diseases and Sciences 4/2022

01-04-2022 | Chronic Inflammatory Bowel Disease | Original Article

Functional Analysis of the Transcriptional Regulator IκB-ζ in Intestinal Homeostasis

Authors: Tomoki Sasaki, Hiroyuki Nagashima, Atsushi Okuma, Takeshi Yamauchi, Kenshi Yamasaki, Setsuya Aiba, Takanori So, Naoto Ishii, Yuji Owada, Takashi MaruYama, Shuhei Kobayashi

Published in: Digestive Diseases and Sciences | Issue 4/2022

Login to get access

Abstract

Background

The Toll-like receptor signaling pathway contributes to the regulation of intestinal homeostasis through interactions with commensal bacteria. Although the transcriptional regulator IκB-ζ can be induced by Toll-like receptor signaling, its role in intestinal homeostasis is still unclear.

Aims

To investigate the role of IκB-ζ in gut homeostasis.

Methods

DSS-administration induced colitis in control and IκB-ζ-deficient mice. The level of immunoglobulins in feces was detected by ELISA. The immunological population in lamina propria (LP) was analyzed by FACS.

Results

IκB-ζ-deficient mice showed severe inflammatory diseases with DSS administration in the gut. The level of IgM in the feces after DSS administration was less in IκB-ζ-deficient mice compared to control mice. Upon administration of DSS, IκB-ζ-deficient mice showed exaggerated intestinal inflammation (more IFN-g-producing CD4+ T cells in LP), and antibiotic treatment canceled this inflammatory phenotype.

Conclusion

IκB-ζ plays a crucial role in maintaining homeostasis in the gut.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kitamura H, Kanehira K, Okita K, Morimatsu M, Saito M. MAIL, a novel nuclear I kappa B protein that potentiates LPS-induced IL-6 production. FEBS Lett. 2000;485:53–56.PubMedCrossRef Kitamura H, Kanehira K, Okita K, Morimatsu M, Saito M. MAIL, a novel nuclear I kappa B protein that potentiates LPS-induced IL-6 production. FEBS Lett. 2000;485:53–56.PubMedCrossRef
2.
go back to reference Motoyama M, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T. Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. J. Biol. Chem. 2005;280:7444–7451.PubMedCrossRef Motoyama M, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T. Positive and negative regulation of nuclear factor-kappaB-mediated transcription by IkappaB-zeta, an inducible nuclear protein. J. Biol. Chem. 2005;280:7444–7451.PubMedCrossRef
3.
go back to reference Yamazaki S, Muta T, Matsuo S, Takeshige K. Stimulus-specific induction of a novel nuclear factor-kappaB regulator, IkappaB-zeta, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. J. Biol. Chem. 2005;280:1678–1687.PubMedCrossRef Yamazaki S, Muta T, Matsuo S, Takeshige K. Stimulus-specific induction of a novel nuclear factor-kappaB regulator, IkappaB-zeta, via Toll/Interleukin-1 receptor is mediated by mRNA stabilization. J. Biol. Chem. 2005;280:1678–1687.PubMedCrossRef
4.
go back to reference Yamamoto M, Yamazaki S, Uematsu S et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature. 2004;430:218–222.PubMedCrossRef Yamamoto M, Yamazaki S, Uematsu S et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature. 2004;430:218–222.PubMedCrossRef
5.
go back to reference Shiina T, Konno A, Oonuma T et al. Targeted disruption of MAIL, a nuclear IkappaB protein, leads to severe atopic dermatitis-like disease. J Biol Chem. 2004;279:55493–55498.PubMedCrossRef Shiina T, Konno A, Oonuma T et al. Targeted disruption of MAIL, a nuclear IkappaB protein, leads to severe atopic dermatitis-like disease. J Biol Chem. 2004;279:55493–55498.PubMedCrossRef
6.
go back to reference Okuma A, Hoshino K, Ohba T et al. Enhanced apoptosis by disruption of the STAT3-IkappaB-zeta signaling pathway in epithelial cells induces Sjogren’s syndrome-like autoimmune disease. Immunity. 2013;38:450–460.PubMedCrossRef Okuma A, Hoshino K, Ohba T et al. Enhanced apoptosis by disruption of the STAT3-IkappaB-zeta signaling pathway in epithelial cells induces Sjogren’s syndrome-like autoimmune disease. Immunity. 2013;38:450–460.PubMedCrossRef
7.
go back to reference MaruYama T, Kobayashi S, Ogasawara K, Yoshimura A, Chen W, Muta T. Control of IFN-gamma production and regulatory function by the inducible nuclear protein IkappaB-zeta in T cells. J Leukoc Biol. 2015;98:385–393.PubMedPubMedCentralCrossRef MaruYama T, Kobayashi S, Ogasawara K, Yoshimura A, Chen W, Muta T. Control of IFN-gamma production and regulatory function by the inducible nuclear protein IkappaB-zeta in T cells. J Leukoc Biol. 2015;98:385–393.PubMedPubMedCentralCrossRef
8.
go back to reference Hanihara F, Takahashi Y, Okuma A, Ohba T, Muta T. Transcriptional and post-transcriptional regulation of IkappaB-zeta upon engagement of the BCR, TLRs and FcgammaR. Int Immunol. 2013;25:531–544.PubMedCrossRef Hanihara F, Takahashi Y, Okuma A, Ohba T, Muta T. Transcriptional and post-transcriptional regulation of IkappaB-zeta upon engagement of the BCR, TLRs and FcgammaR. Int Immunol. 2013;25:531–544.PubMedCrossRef
9.
go back to reference Hanihara-Tatsuzawa F, Miura H, Kobayashi S et al. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IkappaB-zeta. J. Biol. Chem. 2014;289:30925–30936.PubMedPubMedCentralCrossRef Hanihara-Tatsuzawa F, Miura H, Kobayashi S et al. Control of Toll-like receptor-mediated T cell-independent type 1 antibody responses by the inducible nuclear protein IkappaB-zeta. J. Biol. Chem. 2014;289:30925–30936.PubMedPubMedCentralCrossRef
10.
go back to reference Goto Y, Kurashima Y, Kiyono H. The gut microbiota and inflammatory bowel disease. Curr Opin Rheumatol. 2015;27:388–396.PubMedCrossRef Goto Y, Kurashima Y, Kiyono H. The gut microbiota and inflammatory bowel disease. Curr Opin Rheumatol. 2015;27:388–396.PubMedCrossRef
11.
go back to reference Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev. 2012;245:147–163.PubMedCrossRef Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev. 2012;245:147–163.PubMedCrossRef
12.
go back to reference Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–169.PubMedCrossRef Hooper LV, Macpherson AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol. 2010;10:159–169.PubMedCrossRef
13.
go back to reference Hamada H, Hiroi T, Nishiyama Y et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168:57–64.PubMedCrossRef Hamada H, Hiroi T, Nishiyama Y et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol. 2002;168:57–64.PubMedCrossRef
14.
go back to reference Bouskra D, Brezillon C, Berard M et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456:507–510.PubMedCrossRef Bouskra D, Brezillon C, Berard M et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456:507–510.PubMedCrossRef
16.
go back to reference Bollrath J, Powrie FM. Controlling the frontier: regulatory T-cells and intestinal homeostasis. Semin Immunol. 2013;25:352–357.PubMedCrossRef Bollrath J, Powrie FM. Controlling the frontier: regulatory T-cells and intestinal homeostasis. Semin Immunol. 2013;25:352–357.PubMedCrossRef
17.
go back to reference Barmeyer C, Schulzke JD, Fromm M. Claudin-related intestinal diseases. Semin Cell Dev Biol. 2015;42:30–38.PubMedCrossRef Barmeyer C, Schulzke JD, Fromm M. Claudin-related intestinal diseases. Semin Cell Dev Biol. 2015;42:30–38.PubMedCrossRef
19.
go back to reference Kakiuchi N, Yoshida K, Uchino M et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature. 2020;577:260–265.PubMedCrossRef Kakiuchi N, Yoshida K, Uchino M et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature. 2020;577:260–265.PubMedCrossRef
20.
go back to reference Khounlotham M, Kim W, Peatman E et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity. 2012;37:563–573.PubMedPubMedCentralCrossRef Khounlotham M, Kim W, Peatman E et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity. 2012;37:563–573.PubMedPubMedCentralCrossRef
21.
go back to reference Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127:224–238.PubMedCrossRef Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology. 2004;127:224–238.PubMedCrossRef
22.
go back to reference Zhou W, Cao Q, Peng Y et al. FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology. 2009;137:1403–1414.PubMedCrossRef Zhou W, Cao Q, Peng Y et al. FoxO4 inhibits NF-kappaB and protects mice against colonic injury and inflammation. Gastroenterology. 2009;137:1403–1414.PubMedCrossRef
23.
go back to reference Al Alam D, Sala FG, Baptista S et al. FGF9-Pitx2-FGF10 signaling controls cecal formation in mice. Dev Biol. 2012;369:340–348.PubMedCrossRef Al Alam D, Sala FG, Baptista S et al. FGF9-Pitx2-FGF10 signaling controls cecal formation in mice. Dev Biol. 2012;369:340–348.PubMedCrossRef
24.
25.
go back to reference Gao R, Brigstock DR. A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut. 2006;55:856–862.PubMedPubMedCentralCrossRef Gao R, Brigstock DR. A novel integrin alpha5beta1 binding domain in module 4 of connective tissue growth factor (CCN2/CTGF) promotes adhesion and migration of activated pancreatic stellate cells. Gut. 2006;55:856–862.PubMedPubMedCentralCrossRef
26.
go back to reference Grainger JR, Askenase MH, Guimont-Desrochers F, da Fonseca DM, Belkaid Y. Contextual functions of antigen-presenting cells in the gastrointestinal tract. Immunol Rev. 2014;259:75–87.PubMedPubMedCentralCrossRef Grainger JR, Askenase MH, Guimont-Desrochers F, da Fonseca DM, Belkaid Y. Contextual functions of antigen-presenting cells in the gastrointestinal tract. Immunol Rev. 2014;259:75–87.PubMedPubMedCentralCrossRef
27.
go back to reference Nishikawa S, Honda K, Vieira P, Yoshida H. Organogenesis of peripheral lymphoid organs. Immunol Rev. 2003;195:72–80.PubMedCrossRef Nishikawa S, Honda K, Vieira P, Yoshida H. Organogenesis of peripheral lymphoid organs. Immunol Rev. 2003;195:72–80.PubMedCrossRef
28.
29.
go back to reference Donaldson DS, Bradford BM, Artis D, Mabbott NA. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582–595.PubMedCrossRef Donaldson DS, Bradford BM, Artis D, Mabbott NA. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582–595.PubMedCrossRef
30.
go back to reference Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J Immunol. 2003;170:5475–5482.PubMedCrossRef Lorenz RG, Chaplin DD, McDonald KG, McDonough JS, Newberry RD. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J Immunol. 2003;170:5475–5482.PubMedCrossRef
32.
go back to reference Vijay-Kumar M, Wu H, Aitken J et al. Activation of toll-like receptor 3 protects against DSS-induced acute colitis. Inflammatory Bowel Diseases. 2007;13:856–864.PubMedCrossRef Vijay-Kumar M, Wu H, Aitken J et al. Activation of toll-like receptor 3 protects against DSS-induced acute colitis. Inflammatory Bowel Diseases. 2007;13:856–864.PubMedCrossRef
33.
go back to reference Hattori N, Niwa T, Ishida T et al. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci. 2019;110:147–156.PubMed Hattori N, Niwa T, Ishida T et al. Antibiotics suppress colon tumorigenesis through inhibition of aberrant DNA methylation in an azoxymethane and dextran sulfate sodium colitis model. Cancer Sci. 2019;110:147–156.PubMed
34.
go back to reference Hernández-Chirlaque C, Aranda CJ, Ocón B et al. Germ-free and Antibiotic-treated Mice are Highly Susceptible to Epithelial Injury in DSS Colitis. J Crohns Colitis. 2016;10:1324–1335.PubMedCrossRef Hernández-Chirlaque C, Aranda CJ, Ocón B et al. Germ-free and Antibiotic-treated Mice are Highly Susceptible to Epithelial Injury in DSS Colitis. J Crohns Colitis. 2016;10:1324–1335.PubMedCrossRef
35.
go back to reference Huang YL, Chassard C, Hausmann M, von Itzstein M, Hennet T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun. 2015;6:8141.PubMedCrossRef Huang YL, Chassard C, Hausmann M, von Itzstein M, Hennet T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nat Commun. 2015;6:8141.PubMedCrossRef
36.
go back to reference Buchta CM, Bishop GA. Toll-like receptors and B cells: functions and mechanisms. Immunol Res. 2014;59:12–22.PubMedCrossRef Buchta CM, Bishop GA. Toll-like receptors and B cells: functions and mechanisms. Immunol Res. 2014;59:12–22.PubMedCrossRef
37.
go back to reference MaruYama T, Sayama A, Ishii KJ, Muta T. Screening of posttranscriptional regulatory molecules of IkappaB-zeta. Biochem Biophys Res Commun. 2016;469:711–715.PubMedCrossRef MaruYama T, Sayama A, Ishii KJ, Muta T. Screening of posttranscriptional regulatory molecules of IkappaB-zeta. Biochem Biophys Res Commun. 2016;469:711–715.PubMedCrossRef
38.
go back to reference Kirkland D, Benson A, Mirpuri J et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity. 2012;36:228–238.PubMedPubMedCentralCrossRef Kirkland D, Benson A, Mirpuri J et al. B cell-intrinsic MyD88 signaling prevents the lethal dissemination of commensal bacteria during colonic damage. Immunity. 2012;36:228–238.PubMedPubMedCentralCrossRef
39.
go back to reference Hobeika E, Thiemann S, Storch B et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc Natl Acad Sci U S A. 2006;103:13789–13794.PubMedPubMedCentralCrossRef Hobeika E, Thiemann S, Storch B et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc Natl Acad Sci U S A. 2006;103:13789–13794.PubMedPubMedCentralCrossRef
40.
go back to reference Mennigen R, Nolte K, Rijcken E et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1140-1149.PubMedCrossRef Mennigen R, Nolte K, Rijcken E et al. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1140-1149.PubMedCrossRef
41.
go back to reference Phung HT, Nagashima H, Kobayashi S et al. TRAF5 deficiency ameliorates the severity of dextran sulfate sodium colitis by decreasing TRAF2 expression in nonhematopoietic cells. ImmunoHorizons. 2020;4:129–139.PubMedCrossRef Phung HT, Nagashima H, Kobayashi S et al. TRAF5 deficiency ameliorates the severity of dextran sulfate sodium colitis by decreasing TRAF2 expression in nonhematopoietic cells. ImmunoHorizons. 2020;4:129–139.PubMedCrossRef
42.
go back to reference Kawabe T, Sun SL, Fujita T et al. Homeostatic proliferation of naive CD4+ T cells in mesenteric lymph nodes generates gut-tropic Th17 cells. J Immunol. 2013;190:5788–5798.PubMedCrossRef Kawabe T, Sun SL, Fujita T et al. Homeostatic proliferation of naive CD4+ T cells in mesenteric lymph nodes generates gut-tropic Th17 cells. J Immunol. 2013;190:5788–5798.PubMedCrossRef
43.
go back to reference Maruyama T, Li J, Vaque JP et al. Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3. Nat Immunol. 2011;12:86–95.PubMedCrossRef Maruyama T, Li J, Vaque JP et al. Control of the differentiation of regulatory T cells and T(H)17 cells by the DNA-binding inhibitor Id3. Nat Immunol. 2011;12:86–95.PubMedCrossRef
Metadata
Title
Functional Analysis of the Transcriptional Regulator IκB-ζ in Intestinal Homeostasis
Authors
Tomoki Sasaki
Hiroyuki Nagashima
Atsushi Okuma
Takeshi Yamauchi
Kenshi Yamasaki
Setsuya Aiba
Takanori So
Naoto Ishii
Yuji Owada
Takashi MaruYama
Shuhei Kobayashi
Publication date
01-04-2022
Publisher
Springer US
Published in
Digestive Diseases and Sciences / Issue 4/2022
Print ISSN: 0163-2116
Electronic ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-021-06958-8

Other articles of this Issue 4/2022

Digestive Diseases and Sciences 4/2022 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.