Skip to main content
Top
Published in: Cancer Imaging 1/2020

Open Access 01-12-2020 | Cholangiocarcinoma | Research article

MRI features predict microvascular invasion in intrahepatic cholangiocarcinoma

Authors: Xijuan Ma, Liheng Liu, Jun Fang, Shengxiang Rao, Lulu Lv, Mengsu Zeng, Yibing Shi, Chun Yang

Published in: Cancer Imaging | Issue 1/2020

Login to get access

Abstract

Background

The presence of microvascular invasion (MVI) in intrahepatic cholangiocarcinoma (ICC) is a significant adverse prognostic factor. This study sought to investigate the correlation between preoperative imaging parameters and MVI in ICC.

Methods

A total of 108 patients with surgically resected single ICC tumors (34 MVI-positive and 74 MVI-negative lesions) who underwent MRI examination, including T1WI, T2WI, DWI, and dynamic enhancement imaging, were enrolled in this retrospective study. The following qualitative and quantitative characteristics were evaluated: tumor morphology, signal features on T1WI and T2WI, intrahepatic duct dilatation, hepatic capsule retraction, target sign on DWI, dynamic enhancement pattern, arterial phase enhancement pattern, dot−/band-like enhancement inside the tumor, visible vessel penetration inside the tumor (hepatic artery, portal vein, or hepatic vein), integrity of the enhancement edge of the arterial phase, peripheral hepatic enhancement, tumor size, maximum enhancement edge thickness, arterial edge enhancement ratio, and delayed phase enhancement ratio. Other clinicopathological features were also used to predict and evaluate MVI in ICC. Chi-square test, Fisher’s exact test, and independent t-test were used for univariate analysis to determine the relationships among the presence of MVI and these MR parameters. Logistic regression analysis was used to identify predictors of MVI among these MR parameters.

Results

Among MRI characteristics, tumor morphology, intrahepatic duct dilatation, arterial phase enhancement pattern, visible hepatic artery penetration sign, maximum diameter of the tumor and the arterial phase edge enhancement ratio were correlated with MVI (P = 0.007, 0.003, 0.008, 0.000, 0.003, and 0.002, respectively). Furthermore, higher CA19–9 levels (≥37 U/ml) and pathological tumor grade III were also related to MVI (P = 0.014 and 0.004, respectively). However, multivariate logistic regression analysis demonstrated that none of the parameters were independent risk factors for the diagnosis of MVI in ICCs.

Conclusion

For the preoperative prediction of MVI in ICC, six qualitative and quantitative data obtained on preoperative MRI, as well as one tumorigenic marker and the pathological tumor grade, were statistically significant. More research is needed to identify MR characteristics that can be used as independent risk factors.
Literature
1.
go back to reference Sempoux C, Jibara G, Ward SC, Fan C, Qin L, Roayaie S, et al. Intrahepatic cholangiocarcinoma: new insights in pathology. Semin Liver Dis. 2011;31(1):49–60.CrossRef Sempoux C, Jibara G, Ward SC, Fan C, Qin L, Roayaie S, et al. Intrahepatic cholangiocarcinoma: new insights in pathology. Semin Liver Dis. 2011;31(1):49–60.CrossRef
2.
go back to reference Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology. 2005;128(3):620–6.CrossRef Shaib YH, El-Serag HB, Davila JA, Morgan R, McGlynn KA. Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology. 2005;128(3):620–6.CrossRef
3.
go back to reference Khan SA, Davidson BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut. 2002;51(Suppl 6):VI1–9.PubMedPubMedCentral Khan SA, Davidson BR, Goldin R, Pereira SP, Rosenberg WM, Taylor-Robinson SD, et al. Guidelines for the diagnosis and treatment of cholangiocarcinoma: consensus document. Gut. 2002;51(Suppl 6):VI1–9.PubMedPubMedCentral
4.
go back to reference McGlynn KA, Tarone RE, El-Serag HB. A comparison of trends in the incidence of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in the United States. Cancer Epidemiol Biomark Prev. 2006;15(6):1198–203.CrossRef McGlynn KA, Tarone RE, El-Serag HB. A comparison of trends in the incidence of hepatocellular carcinoma and intrahepatic cholangiocarcinoma in the United States. Cancer Epidemiol Biomark Prev. 2006;15(6):1198–203.CrossRef
5.
go back to reference Lim JH. Cholangiocarcinoma: morphologic classification according to growth pattern and imaging findings. AJR Am J Roentgenol. 2003 Sep;181(3):819–27.CrossRef Lim JH. Cholangiocarcinoma: morphologic classification according to growth pattern and imaging findings. AJR Am J Roentgenol. 2003 Sep;181(3):819–27.CrossRef
6.
go back to reference Hirohashi K, Uenishi T, Kubo S, Yamamoto T, Tanaka H, Shuto T, et al. Macroscopic types of intrahepatic cholangiocarcinoma: clinicopathologic features and surgical outcomes. Hepatogastroenterology. 2002;49(44):326–9.PubMed Hirohashi K, Uenishi T, Kubo S, Yamamoto T, Tanaka H, Shuto T, et al. Macroscopic types of intrahepatic cholangiocarcinoma: clinicopathologic features and surgical outcomes. Hepatogastroenterology. 2002;49(44):326–9.PubMed
7.
go back to reference Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg. 2008;248(1):84–96.CrossRef Endo I, Gonen M, Yopp AC, Dalal KM, Zhou Q, Klimstra D, et al. Intrahepatic cholangiocarcinoma: rising frequency, improved survival, and determinants of outcome after resection. Ann Surg. 2008;248(1):84–96.CrossRef
8.
go back to reference Konstadoulakis MM, Roayaie S, Gomatos IP, Labow D, Fiel MI, Miller CM, et al. Fifteen-year, single-Centre experience with the surgical management of intrahepatic cholangiocarcinoma: operative results and long-term outcome. Surgery. 2008;143(3):366–74.CrossRef Konstadoulakis MM, Roayaie S, Gomatos IP, Labow D, Fiel MI, Miller CM, et al. Fifteen-year, single-Centre experience with the surgical management of intrahepatic cholangiocarcinoma: operative results and long-term outcome. Surgery. 2008;143(3):366–74.CrossRef
9.
go back to reference Lang H, Sotiropoulos GC, Sgourakis G, Schmitz KJ, Paul A, Hilgard P, et al. Operations for intrahepatic cholangiocarcinoma: single-institution experience of 158 patients. J Am Coll Surg. 2009;208(2):218–28.CrossRef Lang H, Sotiropoulos GC, Sgourakis G, Schmitz KJ, Paul A, Hilgard P, et al. Operations for intrahepatic cholangiocarcinoma: single-institution experience of 158 patients. J Am Coll Surg. 2009;208(2):218–28.CrossRef
10.
go back to reference Ali SM, Clark CJ, Mounajjed T, Wu TT, Harmsen WS, Reid-Lombardo KM, et al. Model to predict survival after surgical resection of intrahepatic cholangiocarcinoma: the Mayo Clinic experience. HPB (Oxford). 2015;17(3):244–50.CrossRef Ali SM, Clark CJ, Mounajjed T, Wu TT, Harmsen WS, Reid-Lombardo KM, et al. Model to predict survival after surgical resection of intrahepatic cholangiocarcinoma: the Mayo Clinic experience. HPB (Oxford). 2015;17(3):244–50.CrossRef
11.
go back to reference Tsukamoto M, Yi Y, Imai K, Umezaki N, Yamao T, Okabe H, et al. Predictors of cure of intrahepatic cholangiocarcinoma after hepatic resection. Anticancer Res. 2017;37(12):6971–5.PubMed Tsukamoto M, Yi Y, Imai K, Umezaki N, Yamao T, Okabe H, et al. Predictors of cure of intrahepatic cholangiocarcinoma after hepatic resection. Anticancer Res. 2017;37(12):6971–5.PubMed
12.
go back to reference Zhou Y, Wang X, Xu C, Zhou G, Liu X, Gao S, et al. Cholangiocarcinoma: can diffusion-weighted imaging predict microvascular invasion? J Magn Reson Imaging. 2019;50(1):315–24.CrossRef Zhou Y, Wang X, Xu C, Zhou G, Liu X, Gao S, et al. Cholangiocarcinoma: can diffusion-weighted imaging predict microvascular invasion? J Magn Reson Imaging. 2019;50(1):315–24.CrossRef
13.
go back to reference Lee J, Kim SH, Kang TW, Song KD, Choi D, Jang KT. Mass-forming intrahepatic cholangiocarcinoma: diffusion-weighted imaging as a preoperative prognostic marker. Radiology. 2016;281(1):119–28.CrossRef Lee J, Kim SH, Kang TW, Song KD, Choi D, Jang KT. Mass-forming intrahepatic cholangiocarcinoma: diffusion-weighted imaging as a preoperative prognostic marker. Radiology. 2016;281(1):119–28.CrossRef
14.
go back to reference Haradome H, Unno T, Morisaka H, Toda Y, Kwee TC, Kondo H, et al. Gadoxetic acid disodium-enhanced MR imaging of cholangiolocellular carcinoma of the liver: imaging characteristics and histopathological correlations. Eur Radiol. 2017;27(11):4461–71.CrossRef Haradome H, Unno T, Morisaka H, Toda Y, Kwee TC, Kondo H, et al. Gadoxetic acid disodium-enhanced MR imaging of cholangiolocellular carcinoma of the liver: imaging characteristics and histopathological correlations. Eur Radiol. 2017;27(11):4461–71.CrossRef
15.
go back to reference Washington MK, Berlin J, Branton PA, Burgart LJ, Carter DK, Compton CC, et al. Protocol for the examination of specimens from patients with carcinoma of the intrahepatic bile ducts. Arch Pathol Lab Med. 2010;134(4):e14–8.PubMed Washington MK, Berlin J, Branton PA, Burgart LJ, Carter DK, Compton CC, et al. Protocol for the examination of specimens from patients with carcinoma of the intrahepatic bile ducts. Arch Pathol Lab Med. 2010;134(4):e14–8.PubMed
16.
go back to reference Sasaki K, Margonis GA, Andreatos N, Chen Q, Barbon C, Bagante F, et al. Serum tumor markers enhance the predictive power of the AJCC and LCSGJ staging systems in resectable intrahepatic cholangiocarcinoma. HPB (Oxford). 2018;20(10):956–65.CrossRef Sasaki K, Margonis GA, Andreatos N, Chen Q, Barbon C, Bagante F, et al. Serum tumor markers enhance the predictive power of the AJCC and LCSGJ staging systems in resectable intrahepatic cholangiocarcinoma. HPB (Oxford). 2018;20(10):956–65.CrossRef
17.
go back to reference Yamamoto Y, Sugiura T, Todaka A, Okamura Y, Ito T, Ashida R, et al. Surgical indication for advanced intrahepatic cholangiocarcinoma according to the optimal preoperative carbohydrate antigen 19-9 cutoff value. World J Surg. 2018;42(10):3331–40.CrossRef Yamamoto Y, Sugiura T, Todaka A, Okamura Y, Ito T, Ashida R, et al. Surgical indication for advanced intrahepatic cholangiocarcinoma according to the optimal preoperative carbohydrate antigen 19-9 cutoff value. World J Surg. 2018;42(10):3331–40.CrossRef
18.
go back to reference Yoh T, Seo S, Hatano E, Taura K, Fuji H, Ikeno Y, et al. A novel biomarker-based preoperative prognostic grading system for predicting survival after surgery for intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2017;24(5):1351–7.CrossRef Yoh T, Seo S, Hatano E, Taura K, Fuji H, Ikeno Y, et al. A novel biomarker-based preoperative prognostic grading system for predicting survival after surgery for intrahepatic cholangiocarcinoma. Ann Surg Oncol. 2017;24(5):1351–7.CrossRef
19.
go back to reference Spolverato G, Ejaz A, Kim Y, Sotiropoulos GC, Pau A, Alexandrescu S, et al. Tumor size predicts vascular invasion and histologic grade among patients undergoing resection of intrahepatic cholangiocarcinoma. J Gastrointest Surg. 2014;18(7):1284–91.CrossRef Spolverato G, Ejaz A, Kim Y, Sotiropoulos GC, Pau A, Alexandrescu S, et al. Tumor size predicts vascular invasion and histologic grade among patients undergoing resection of intrahepatic cholangiocarcinoma. J Gastrointest Surg. 2014;18(7):1284–91.CrossRef
20.
go back to reference Kajiyama K, Maeda T, Takenaka K, Sugimachi K, Tsuneyoshi M. The significance of stromal desmoplasia in intrahepatic cholangiocarcinoma: Aspecial reference of ‘scirrhous-type’ and ‘nonscirrhous-type’ growth. Am J Surg Pathol. 1999;23(8):892–902.CrossRef Kajiyama K, Maeda T, Takenaka K, Sugimachi K, Tsuneyoshi M. The significance of stromal desmoplasia in intrahepatic cholangiocarcinoma: Aspecial reference of ‘scirrhous-type’ and ‘nonscirrhous-type’ growth. Am J Surg Pathol. 1999;23(8):892–902.CrossRef
21.
go back to reference Sirica AE, Gores GJ. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology. 2014;59(6):2397–402.CrossRef Sirica AE, Gores GJ. Desmoplastic stroma and cholangiocarcinoma: clinical implications and therapeutic targeting. Hepatology. 2014;59(6):2397–402.CrossRef
22.
go back to reference Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology. 2013;58(6):1992–2000.CrossRef Sulpice L, Rayar M, Desille M, Turlin B, Fautrel A, Boucher E, et al. Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma. Hepatology. 2013;58(6):1992–2000.CrossRef
23.
go back to reference Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133–44.CrossRef Xu X, Zhang HL, Liu QP, Sun SW, Zhang J, Zhu FP, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol. 2019;70(6):1133–44.CrossRef
24.
go back to reference Zhao H, Hua Y, Dai T, He J, Tang M, Fu X, et al. Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma. Eur J Radiol. 2017;88:32–40.CrossRef Zhao H, Hua Y, Dai T, He J, Tang M, Fu X, et al. Development and validation of a novel predictive scoring model for microvascular invasion in patients with hepatocellular carcinoma. Eur J Radiol. 2017;88:32–40.CrossRef
25.
go back to reference Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675–80.CrossRef Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25(6):675–80.CrossRef
26.
go back to reference Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.CrossRef Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.CrossRef
Metadata
Title
MRI features predict microvascular invasion in intrahepatic cholangiocarcinoma
Authors
Xijuan Ma
Liheng Liu
Jun Fang
Shengxiang Rao
Lulu Lv
Mengsu Zeng
Yibing Shi
Chun Yang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Cancer Imaging / Issue 1/2020
Electronic ISSN: 1470-7330
DOI
https://doi.org/10.1186/s40644-020-00318-x

Other articles of this Issue 1/2020

Cancer Imaging 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine