Skip to main content
Top
Published in: Investigational New Drugs 5/2015

01-10-2015 | PRECLINICAL STUDIES

Chloroquine inhibits the malignant phenotype of glioblastoma partially by suppressing TGF-beta

Authors: Laurent-Olivier Roy, Marie-Belle Poirier, David Fortin

Published in: Investigational New Drugs | Issue 5/2015

Login to get access

Summary

Background Glioblastoma (GBM), the most common and aggressive primary brain tumor, is characterized by excessive brain infiltration which prevents the complete surgical resection. These tumors also display treatment non-compliance and responses to standard therapy are invariably transient; consequently, the prognosis barely exceeds 14 months and recurrence is inevitable. Accordingly, several new treatment strategies have been studied. One such option is the use of chloroquine (CQ), a lysosomotropic weak base and renowned antimalarial drug, that has shown promising results in several pre-clinical studies. In this paper, we investigate the efficiency of CQ to hinder the malignant phenotype of GBM, namely extensive proliferation, invasion and radio-resistance. Results In cell cycle analysis, proliferation assays and immunofluorescence, CQ treatments halved proliferation of primary cultures from GBM specimens and GBM cell lines (U-373 MG et U-87 MG). Gelatin zymography and MatrigelTM-coated transwell invasion assays also revealed a 50 % CQ induced inhibition of MMP-2 activity and GBM invasion. Concomitant treatment with CQ and radiation also radiosensitized GBM cells as shown by an accumulation in the G2/M phase, increased cell death and reduced clonogenic formation. Moreover, radiation-induced invasion was considerably restrained by CQ. We also observe that these effects are owed to CQ-induced inhibition of TGF-β secretion and signaling pathway, a predominant growth factor in GBM progression. Conclusion These results suggest that CQ, alone or as an adjuvant therapeutic, could be used to inhibit the GBM malignant phenotype and could benefit GBM afflicted patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):v1–v49PubMedCentralCrossRefPubMed Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):v1–v49PubMedCentralCrossRefPubMed
2.
go back to reference Fritz A, Percy C, Jack A, Shanmugaratnam K, Parkin DM, Whelan S (2012) International Classification of Diseases for Oncology, 3rd edn. Publication of the World Health Organization 1–250 Fritz A, Percy C, Jack A, Shanmugaratnam K, Parkin DM, Whelan S (2012) International Classification of Diseases for Oncology, 3rd edn. Publication of the World Health Organization 1–250
3.
go back to reference Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff R-O, Groups EOFRATOCBTARO, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5 years analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMed Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff R-O, Groups EOFRATOCBTARO, National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5 years analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466CrossRefPubMed
4.
go back to reference Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMed
6.
go back to reference Bleau A-M, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralCrossRefPubMed Bleau A-M, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralCrossRefPubMed
7.
go back to reference Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu I-M, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralCrossRefPubMed Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu I-M, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Hartigan J, Smith DR, Strausberg RL, Marie SKN, Shinjo SMO, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralCrossRefPubMed
8.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, Groups EOFRATOCBTAR, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, Groups EOFRATOCBTAR, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
9.
go back to reference Field KM, Jordan JT, Wen PY, Rosenthal MA, Reardon DA (2014) Bevacizumab and glioblastoma: Scientific review, newly reported updates, and ongoing controversies. Cancer. doi:10.1002/cncr.28935 PubMed Field KM, Jordan JT, Wen PY, Rosenthal MA, Reardon DA (2014) Bevacizumab and glioblastoma: Scientific review, newly reported updates, and ongoing controversies. Cancer. doi:10.​1002/​cncr.​28935 PubMed
10.
go back to reference Kilic T, Alberta JA, Zdunek PR, Acar M, Iannarelli P, O’Reilly T, Buchdunger E, Black PM, Stiles CD (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60:5143–5150PubMed Kilic T, Alberta JA, Zdunek PR, Acar M, Iannarelli P, O’Reilly T, Buchdunger E, Black PM, Stiles CD (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60:5143–5150PubMed
13.
go back to reference Jiang P, Mukthavaram R, Mukthavavam R, Chao Y, Bharati IS, Fogal V, Pastorino S, Cong X, Nomura N, Gallagher M, Abbasi T, Vali S, Pingle SC, Makale M, Kesari S (2014) Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med 12:13. doi:10.1186/1479-5876-12-13 PubMedCentralCrossRefPubMed Jiang P, Mukthavaram R, Mukthavavam R, Chao Y, Bharati IS, Fogal V, Pastorino S, Cong X, Nomura N, Gallagher M, Abbasi T, Vali S, Pingle SC, Makale M, Kesari S (2014) Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med 12:13. doi:10.​1186/​1479-5876-12-13 PubMedCentralCrossRefPubMed
14.
go back to reference Rahman R, Hempfling K, Norden AD, Reardon DA, Nayak L, Rinne ML, Beroukhim R, Doherty L, Ruland S, Rai A, Rifenburg J, LaFrankie D, Alexander BM, Huang RY, Wen PY, Lee EQ (2014) Retrospective study of carmustine or lomustine with Bevacizumab in recurrent glioblastoma patients who have failed prior Bevacizumab. Neuro-Oncology 16:1523–1529. doi:10.1093/neuonc/nou118 CrossRefPubMed Rahman R, Hempfling K, Norden AD, Reardon DA, Nayak L, Rinne ML, Beroukhim R, Doherty L, Ruland S, Rai A, Rifenburg J, LaFrankie D, Alexander BM, Huang RY, Wen PY, Lee EQ (2014) Retrospective study of carmustine or lomustine with Bevacizumab in recurrent glioblastoma patients who have failed prior Bevacizumab. Neuro-Oncology 16:1523–1529. doi:10.​1093/​neuonc/​nou118 CrossRefPubMed
16.
go back to reference Kim EL, Wüstenberg R, Rübsam A, Schmitz-Salue C, Warnecke G, Bücker E-M, Pettkus N, Speidel D, Rohde V, Schulz-Schaeffer W, Deppert W, Giese A (2010) Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro-Oncology 12:389–400. doi:10.1093/neuonc/nop046 PubMedCentralCrossRefPubMed Kim EL, Wüstenberg R, Rübsam A, Schmitz-Salue C, Warnecke G, Bücker E-M, Pettkus N, Speidel D, Rohde V, Schulz-Schaeffer W, Deppert W, Giese A (2010) Chloroquine activates the p53 pathway and induces apoptosis in human glioma cells. Neuro-Oncology 12:389–400. doi:10.​1093/​neuonc/​nop046 PubMedCentralCrossRefPubMed
19.
go back to reference Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-beta). Int J Biochem Cell Biol 30:293–298CrossRefPubMed Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-beta). Int J Biochem Cell Biol 30:293–298CrossRefPubMed
20.
go back to reference Dubois CM, Blanchette F, Laprise M-H, Leduc R, Grondin F, Seidah NG (2001) Evidence that furin is an authentic transforming growth factor-β1-converting enzyme. Am J Pathol 158:305–316PubMedCentralCrossRefPubMed Dubois CM, Blanchette F, Laprise M-H, Leduc R, Grondin F, Seidah NG (2001) Evidence that furin is an authentic transforming growth factor-β1-converting enzyme. Am J Pathol 158:305–316PubMedCentralCrossRefPubMed
21.
go back to reference Dubois CM, Laprise M-H, Blanchette F, Gentry LE, Leduc R (1995) Processing of transforming growth factor b1 precusor by human furin convertase. J Biol Chem 270:10618–10624CrossRefPubMed Dubois CM, Laprise M-H, Blanchette F, Gentry LE, Leduc R (1995) Processing of transforming growth factor b1 precusor by human furin convertase. J Biol Chem 270:10618–10624CrossRefPubMed
22.
go back to reference Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603CrossRefPubMed Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603CrossRefPubMed
23.
go back to reference Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 72:4119–4129PubMedCentralCrossRefPubMed Hardee ME, Marciscano AE, Medina-Ramirez CM, Zagzag D, Narayana A, Lonning SM, Barcellos-Hoff MH (2012) Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res 72:4119–4129PubMedCentralCrossRefPubMed
24.
go back to reference Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43CrossRefPubMed Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43CrossRefPubMed
25.
go back to reference Seoane J, Le H-V, Shen L, Anderson SA, Massagué J (2004) Integration of smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223CrossRefPubMed Seoane J, Le H-V, Shen L, Anderson SA, Massagué J (2004) Integration of smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223CrossRefPubMed
26.
go back to reference Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neuro-Oncol 53:177–185CrossRef Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neuro-Oncol 53:177–185CrossRef
27.
go back to reference Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A (1992) Differential expression of transforming growth factor-beta 1, −beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148:1404–1410PubMed Constam DB, Philipp J, Malipiero UV, ten Dijke P, Schachner M, Fontana A (1992) Differential expression of transforming growth factor-beta 1, −beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148:1404–1410PubMed
28.
go back to reference Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258CrossRefPubMed Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B (2000) Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258CrossRefPubMed
30.
go back to reference Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, Prieto-SAnchez RM, Barba I, Martínez-Sáez E, Prudkin L, Cuartas I, Raventós C, Martínez-Ricarte F, Poca MA, GarcIa-Dorado D, Lahn MM, Yingling JM, Rodón J, Sahuquillo J, Baselga J, Seoane J (2010) TGF-beta receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668. doi:10.1016/j.ccr.2010.10.023 CrossRefPubMed Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, Prieto-SAnchez RM, Barba I, Martínez-Sáez E, Prudkin L, Cuartas I, Raventós C, Martínez-Ricarte F, Poca MA, GarcIa-Dorado D, Lahn MM, Yingling JM, Rodón J, Sahuquillo J, Baselga J, Seoane J (2010) TGF-beta receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668. doi:10.​1016/​j.​ccr.​2010.​10.​023 CrossRefPubMed
31.
go back to reference Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neuro-Oncol 36:123–140CrossRef Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neuro-Oncol 36:123–140CrossRef
32.
go back to reference Peñuelas S, Anido J, Prieto-SAnchez RM, Folch G, Barba I, Cuartas I, GarcIa-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327. doi:10.1016/j.ccr.2009.02.011 CrossRefPubMed Peñuelas S, Anido J, Prieto-SAnchez RM, Folch G, Barba I, Cuartas I, GarcIa-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327. doi:10.​1016/​j.​ccr.​2009.​02.​011 CrossRefPubMed
33.
go back to reference Byfield SD, Major C, Laping NJ (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752CrossRef Byfield SD, Major C, Laping NJ (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752CrossRef
34.
go back to reference Schlingensiepen R, Goldbrunner M, Szyrach MNI, Stauder G, Jachimczak P, Bogdahn U, Schulmeyer F, Hau P, Schlingensiepen K-H (2005) Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15:94–104CrossRefPubMed Schlingensiepen R, Goldbrunner M, Szyrach MNI, Stauder G, Jachimczak P, Bogdahn U, Schulmeyer F, Hau P, Schlingensiepen K-H (2005) Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15:94–104CrossRefPubMed
35.
go back to reference Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G, McDonald HA, Harper J, Lonning S, Okada H (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559PubMedCentralCrossRefPubMed Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G, McDonald HA, Harper J, Lonning S, Okada H (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559PubMedCentralCrossRefPubMed
36.
go back to reference Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ying Ma J, Almirez R, Mangadu R, Liu Y-W, Platten M, Herrlinger U, Murphy A, Wong DH, Wick W, Higgins LS, Weller M (2004) SD-208, a novel transforming growth factor receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961CrossRefPubMed Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ying Ma J, Almirez R, Mangadu R, Liu Y-W, Platten M, Herrlinger U, Murphy A, Wong DH, Wick W, Higgins LS, Weller M (2004) SD-208, a novel transforming growth factor receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961CrossRefPubMed
37.
go back to reference Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999) Gelatinase-a (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835. doi:10.1038/sj.bjc.6690291 PubMedCentralCrossRefPubMed Forsyth PA, Wong H, Laing TD, Rewcastle NB, Morris DG, Muzik H, Leco KJ, Johnston RN, Brasher PM, Sutherland G, Edwards DR (1999) Gelatinase-a (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas. Br J Cancer 79:1828–1835. doi:10.​1038/​sj.​bjc.​6690291 PubMedCentralCrossRefPubMed
38.
go back to reference Desmarais G, Fortin D, Bujold R, Wagner R, Mathieu D, Paquette B (2012) Infiltration of glioma cells in brain parenchyma stimulated by radiation in the F98/fischer rat model. Int J Radiat Biol 88:565–574CrossRefPubMed Desmarais G, Fortin D, Bujold R, Wagner R, Mathieu D, Paquette B (2012) Infiltration of glioma cells in brain parenchyma stimulated by radiation in the F98/fischer rat model. Int J Radiat Biol 88:565–574CrossRefPubMed
40.
go back to reference Duguay SJ, Jin Y, Stein J, Duguay AN, Gardner P, Steiner DF (1998) Post-translational processing of the insulin-like growth factor-2 precursor. Analysis of O-glycosylation and endoproteolysis. J Biol Chem 273:18443–18451CrossRefPubMed Duguay SJ, Jin Y, Stein J, Duguay AN, Gardner P, Steiner DF (1998) Post-translational processing of the insulin-like growth factor-2 precursor. Analysis of O-glycosylation and endoproteolysis. J Biol Chem 273:18443–18451CrossRefPubMed
47.
go back to reference Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420. doi:10.1016/j.ccr.2007.04.001 CrossRefPubMed Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420. doi:10.​1016/​j.​ccr.​2007.​04.​001 CrossRefPubMed
49.
go back to reference Dix AR, Brooks WH, Roszman TL, Morford LA (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232CrossRefPubMed Dix AR, Brooks WH, Roszman TL, Morford LA (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232CrossRefPubMed
50.
go back to reference Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa AC (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8 + T lymphocytes. Inhibition by transforming growth factor-beta. J Immunol 146:3289–3297PubMed Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa AC (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8 + T lymphocytes. Inhibition by transforming growth factor-beta. J Immunol 146:3289–3297PubMed
51.
go back to reference Gustafsson LL, Walker O, Alván G, Beermann B, Estevez F, Gleisner L, Lindström B, Sjöqvist F (1983) Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol 15:471–479PubMedCentralCrossRefPubMed Gustafsson LL, Walker O, Alván G, Beermann B, Estevez F, Gleisner L, Lindström B, Sjöqvist F (1983) Disposition of chloroquine in man after single intravenous and oral doses. Br J Clin Pharmacol 15:471–479PubMedCentralCrossRefPubMed
52.
go back to reference Marques MM, Costa MRF, Santana Filho FS, Vieira JLF, Nascimento MTS, Brasil LW, Nogueira F, Silveira H, Reyes-Lecca RC, Monteiro WM, Lacerda MVG, Alecrim MGC (2013) Plasmodium vivax chloroquine resistance and anemia in the western Brazilian amazon. Antimicrob Agents Chemother 58:342–347. doi:10.1128/AAC.02279-12 CrossRefPubMed Marques MM, Costa MRF, Santana Filho FS, Vieira JLF, Nascimento MTS, Brasil LW, Nogueira F, Silveira H, Reyes-Lecca RC, Monteiro WM, Lacerda MVG, Alecrim MGC (2013) Plasmodium vivax chloroquine resistance and anemia in the western Brazilian amazon. Antimicrob Agents Chemother 58:342–347. doi:10.​1128/​AAC.​02279-12 CrossRefPubMed
53.
go back to reference Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthana P, Lawpoolsri S, Lee SJ, Hanpithakpong W, Hanboonkunupakarn B, Day NPJ, Ashley EA, White NJ (2014) Pharmacokinetic interactions between primaquine and chloroquine. Antimicrob Agents Chemother 58:3354–3359. doi:10.1128/AAC.02794-13 PubMedCentralCrossRefPubMed Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthana P, Lawpoolsri S, Lee SJ, Hanpithakpong W, Hanboonkunupakarn B, Day NPJ, Ashley EA, White NJ (2014) Pharmacokinetic interactions between primaquine and chloroquine. Antimicrob Agents Chemother 58:3354–3359. doi:10.​1128/​AAC.​02794-13 PubMedCentralCrossRefPubMed
54.
go back to reference Rengelshausen J, Burhenne JR, Fröhlich M, Tayrouz Y, Singh SK, Riedel K-D, Müller O, Hoppe-Tichy T, Haefeli WE, Mikus G, Walter-Sack I (2004) Pharmacokinetic interaction of chloroquine and methylene blue combination against malaria. Eur J Clin Pharmacol 60:709–715. doi:10.1007/s00228-004-0818-0 CrossRefPubMed Rengelshausen J, Burhenne JR, Fröhlich M, Tayrouz Y, Singh SK, Riedel K-D, Müller O, Hoppe-Tichy T, Haefeli WE, Mikus G, Walter-Sack I (2004) Pharmacokinetic interaction of chloroquine and methylene blue combination against malaria. Eur J Clin Pharmacol 60:709–715. doi:10.​1007/​s00228-004-0818-0 CrossRefPubMed
Metadata
Title
Chloroquine inhibits the malignant phenotype of glioblastoma partially by suppressing TGF-beta
Authors
Laurent-Olivier Roy
Marie-Belle Poirier
David Fortin
Publication date
01-10-2015
Publisher
Springer US
Published in
Investigational New Drugs / Issue 5/2015
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-015-0275-x

Other articles of this Issue 5/2015

Investigational New Drugs 5/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine