Skip to main content
Top
Published in: Targeted Oncology 1/2015

01-03-2015 | Review

Transforming growth factor-beta and its implication in the malignancy of gliomas

Authors: Laurent-Olivier Roy, Marie-Belle Poirier, David Fortin

Published in: Targeted Oncology | Issue 1/2015

Login to get access

Abstract

Malignant gliomas are the most common type of primary malignant brain tumors. They are characterized by enhanced growing capabilities, neoangiogenic proliferation, and extensive infiltration of the brain parenchyma, which make their complete surgical resection impossible. Together with transient and refractory responses to standard therapy, these aggressive neoplasms are incurable and present a median survival of 12 to 14 months. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine of which two of the three isoforms expressed in humans have been shown to be overexpressed proportionally to the histologic grade of glioma malignancy. The increase of chromosomal aberrations and genetic mutations observed in glioma cells turns TGF-β into an oncogene. For that reason, it plays critical roles in glioma progression through induction of several genes implicated in many carcinogenic processes such as proliferation, angiogenesis, and invasion. Consequently, investigators have begun developing innovative therapeutics targeting this growth factor or its signaling pathway in an attempt to hinder TGF-β’s appalling effects in order to refine the treatment of malignant gliomas and improve their prognosis. In this paper, we extensively review the TGF-β-induced oncogenic pathways and discuss the diverse new molecules targeting this growth factor.
Literature
1.
go back to reference Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358PubMed Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358PubMed
2.
go back to reference Govinden R, Bhoola KD (2003) Genealogy, expression, and cellular function of transforming growth factor-b. Pharmacol Ther 98:257–265PubMed Govinden R, Bhoola KD (2003) Genealogy, expression, and cellular function of transforming growth factor-b. Pharmacol Ther 98:257–265PubMed
3.
go back to reference Wang G, Matsuura I, He D et al (2009) Transforming growth factor-{beta}-inducible phosphorylation of Smad3. J Biol Chem 284:9663–9673PubMedCentralPubMed Wang G, Matsuura I, He D et al (2009) Transforming growth factor-{beta}-inducible phosphorylation of Smad3. J Biol Chem 284:9663–9673PubMedCentralPubMed
4.
go back to reference Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29PubMed Wakefield LM, Roberts AB (2002) TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12:22–29PubMed
5.
go back to reference Dolecek TA, Propp JM, Stroup NE et al (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neurol Oncol 14:v1–49 Dolecek TA, Propp JM, Stroup NE et al (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neurol Oncol 14:v1–49
7.
go back to reference Liu C, Sage JC, Miller MR et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221PubMedCentralPubMed Liu C, Sage JC, Miller MR et al (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221PubMedCentralPubMed
8.
go back to reference Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralPubMed Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCentralPubMed
9.
go back to reference Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMed Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMed
10.
go back to reference Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMed Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760PubMed
11.
go back to reference Beier D, Schulz JB, Beier CP (2011) Chemoresistance of glioblastoma cancer stem cells—much more complex than expected. Mol Cancer 10:128PubMedCentralPubMed Beier D, Schulz JB, Beier CP (2011) Chemoresistance of glioblastoma cancer stem cells—much more complex than expected. Mol Cancer 10:128PubMedCentralPubMed
12.
go back to reference Bleau A-M, Hambardzumyan D, Ozawa T et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralPubMed Bleau A-M, Hambardzumyan D, Ozawa T et al (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235PubMedCentralPubMed
13.
go back to reference Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMed Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMed
14.
go back to reference Anido J, Sáez-Borderías A, Gonzàlez-Juncà A et al (2010) TGF-beta receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668PubMed Anido J, Sáez-Borderías A, Gonzàlez-Juncà A et al (2010) TGF-beta receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18:655–668PubMed
15.
go back to reference Desmarais G, Fortin D, Bujold R et al (2012) Infiltration of glioma cells in brain parenchyma stimulated by radiation in the F98/Fischer rat model. Int J Radiat Biol 88:565–574PubMed Desmarais G, Fortin D, Bujold R et al (2012) Infiltration of glioma cells in brain parenchyma stimulated by radiation in the F98/Fischer rat model. Int J Radiat Biol 88:565–574PubMed
16.
go back to reference Kjellman C, Olofsson S, Hansson O (2000) Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258PubMed Kjellman C, Olofsson S, Hansson O (2000) Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 89:251–258PubMed
17.
go back to reference Gatherer D, Ten Dijke P, Baird DT et al (1990) Expression of TGF-beta isoforms during first trimester human embryogenesis. Development 110:445–460PubMed Gatherer D, Ten Dijke P, Baird DT et al (1990) Expression of TGF-beta isoforms during first trimester human embryogenesis. Development 110:445–460PubMed
18.
go back to reference Saharinen J, Hyytiäinen M, Taipale J et al (1999) Latent transforming growth factor-beta binding proteins (LTBPs)—structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 10:99–117PubMed Saharinen J, Hyytiäinen M, Taipale J et al (1999) Latent transforming growth factor-beta binding proteins (LTBPs)—structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 10:99–117PubMed
19.
go back to reference Dubois CM, Laprise M-H, Blanchette F et al (1995) Processing of transforming growth factor b1 precusor by human furin convertase. J Biol Chem 270:10618–10624PubMed Dubois CM, Laprise M-H, Blanchette F et al (1995) Processing of transforming growth factor b1 precusor by human furin convertase. J Biol Chem 270:10618–10624PubMed
20.
go back to reference Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-b). Int J Biochem Cell Biol 30:293–298PubMed Clark DA, Coker R (1998) Transforming growth factor-beta (TGF-b). Int J Biochem Cell Biol 30:293–298PubMed
21.
go back to reference Horimoto M, Kato J, Takimoto R et al (1995) Identification of a transforming growth factor beta-1 activator derived from a human gastric cancer cell line. Br J Cancer 72:676–682PubMedCentralPubMed Horimoto M, Kato J, Takimoto R et al (1995) Identification of a transforming growth factor beta-1 activator derived from a human gastric cancer cell line. Br J Cancer 72:676–682PubMedCentralPubMed
22.
go back to reference Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signaling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337PubMed Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signaling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337PubMed
23.
24.
25.
go back to reference Huang T, David L, Mendoza V et al (2011) TGF-beta; signaling is mediated by two autonomously functioning TBRI:TBRII pairs. EMBO J 30:1263–1276PubMedCentralPubMed Huang T, David L, Mendoza V et al (2011) TGF-beta; signaling is mediated by two autonomously functioning TBRI:TBRII pairs. EMBO J 30:1263–1276PubMedCentralPubMed
26.
go back to reference Massagué J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309PubMed Massagué J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309PubMed
27.
go back to reference Xu J (2000) Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor β signaling by targeting Smads to the ubiquitin–proteasome pathway. Paper presented at the Proc Natl Acad Sci U S A Xu J (2000) Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor β signaling by targeting Smads to the ubiquitin–proteasome pathway. Paper presented at the Proc Natl Acad Sci U S A
28.
go back to reference Abdollah S, Marcias-Silva M, Tsukazaki T et al (1997) TBRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and. J Biol Chem 272:27678–27685PubMed Abdollah S, Marcias-Silva M, Tsukazaki T et al (1997) TBRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and. J Biol Chem 272:27678–27685PubMed
29.
go back to reference Matsuura I, Denissova NG, Wang G et al (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430:226–231PubMed Matsuura I, Denissova NG, Wang G et al (2004) Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 430:226–231PubMed
30.
go back to reference Tsukazaki T, Chiang T, Davison A et al (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF [beta] receptor. Cell 95:779–791PubMed Tsukazaki T, Chiang T, Davison A et al (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGF [beta] receptor. Cell 95:779–791PubMed
31.
go back to reference Hayashi H, Abdollah S, Qiu Y et al (1997) The MAD-related protein Smad7 associates with the TGFB receptor and functions as an antagonist of TGFB signaling. Cell 89:1165–1173PubMed Hayashi H, Abdollah S, Qiu Y et al (1997) The MAD-related protein Smad7 associates with the TGFB receptor and functions as an antagonist of TGFB signaling. Cell 89:1165–1173PubMed
32.
go back to reference Nakao A, Imamura T, Souchelnytskyi S et al (1997) TGF-beta receptor-mediated signaling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362PubMedCentralPubMed Nakao A, Imamura T, Souchelnytskyi S et al (1997) TGF-beta receptor-mediated signaling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362PubMedCentralPubMed
33.
go back to reference Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425:577–584PubMed Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature 425:577–584PubMed
34.
go back to reference Ebisawa T, Fukuchi M, Murakami G (2001) Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480PubMed Ebisawa T, Fukuchi M, Murakami G (2001) Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480PubMed
35.
go back to reference Kavsak P, Rasmussen RK, Causing CG et al (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell 6:1365–1375PubMed Kavsak P, Rasmussen RK, Causing CG et al (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell 6:1365–1375PubMed
36.
go back to reference Lin X (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275:36818–36822PubMed Lin X (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem 275:36818–36822PubMed
37.
go back to reference Morén A, Imamura T, Miyazono K et al (2005) Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 280:22115–22123PubMed Morén A, Imamura T, Miyazono K et al (2005) Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem 280:22115–22123PubMed
38.
go back to reference Inui M, Manfrin A, Mamidi A et al (2011) USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 13:1368–1375PubMed Inui M, Manfrin A, Mamidi A et al (2011) USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol 13:1368–1375PubMed
39.
go back to reference Aggarwal K, Massagué J (2012) Ubiquitin removal in the TGF-β pathway. Nat Cell Biol 14:656–657PubMed Aggarwal K, Massagué J (2012) Ubiquitin removal in the TGF-β pathway. Nat Cell Biol 14:656–657PubMed
40.
go back to reference De Boeck M, Ten Dijke P (2012) Key role for ubiquitin protein modification in TGFβ signal transduction. Ups J Med Sci 117:153–165PubMedCentralPubMed De Boeck M, Ten Dijke P (2012) Key role for ubiquitin protein modification in TGFβ signal transduction. Ups J Med Sci 117:153–165PubMedCentralPubMed
41.
go back to reference Dupont S, Mamidi A, Cordenonsi M et al (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136:123–135PubMed Dupont S, Mamidi A, Cordenonsi M et al (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFβ signaling, controls Smad4 monoubiquitination. Cell 136:123–135PubMed
42.
go back to reference Eichhorn PJA, Rodón L, Gonzàlez-Juncà A et al (2012) USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 18:429–435PubMed Eichhorn PJA, Rodón L, Gonzàlez-Juncà A et al (2012) USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat Med 18:429–435PubMed
43.
go back to reference Zhang L, Zhou F, Drabsch Y et al (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol 14:717–726PubMed Zhang L, Zhou F, Drabsch Y et al (2012) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-β type I receptor. Nat Cell Biol 14:717–726PubMed
44.
go back to reference Moustakas A, Heldin C-H (2005) Non-Smad TGF-β signals. J Cell Sci 118:3573–3584PubMed Moustakas A, Heldin C-H (2005) Non-Smad TGF-β signals. J Cell Sci 118:3573–3584PubMed
45.
go back to reference Mu Y, Gudey SK, Landström M (2011) Non-Smad signaling pathways. Cell Tissue Res 347:11–20PubMed Mu Y, Gudey SK, Landström M (2011) Non-Smad signaling pathways. Cell Tissue Res 347:11–20PubMed
47.
go back to reference Chen R, Ebner R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 260:1335–1338PubMed Chen R, Ebner R (1993) Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-beta activities. Science 260:1335–1338PubMed
48.
go back to reference Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol 36:123–140PubMed Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol 36:123–140PubMed
49.
go back to reference Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMed Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021PubMed
50.
go back to reference Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMed Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109PubMedCentralPubMed
51.
go back to reference Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMed Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMed
52.
go back to reference Turner JD, Abla AA, Sanai N (2012) Identification of the glioma cell of origin. World Neurosurg, Sep, pp 200-201 Turner JD, Abla AA, Sanai N (2012) Identification of the glioma cell of origin. World Neurosurg, Sep, pp 200-201
53.
go back to reference Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10:133–146PubMedCentralPubMed Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10:133–146PubMedCentralPubMed
54.
go back to reference Fortin D, Desjardins A, Benko A et al (2005) Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors. Cancer 103:2606–2615PubMed Fortin D, Desjardins A, Benko A et al (2005) Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors. Cancer 103:2606–2615PubMed
55.
go back to reference Bigner SH, Mark J, Bullard DE et al (1986) Chromosomal evolution in malignant human gliomas starts with specific and usually numerical deviations. Cancer Genet Cytogenet 22:121–135PubMed Bigner SH, Mark J, Bullard DE et al (1986) Chromosomal evolution in malignant human gliomas starts with specific and usually numerical deviations. Cancer Genet Cytogenet 22:121–135PubMed
56.
go back to reference Bigner SH, Mark J, Burger PC et al (1988) Specific chromosomal abnormalities in malignant human gliomas. Cancer Res 48:405–411PubMed Bigner SH, Mark J, Burger PC et al (1988) Specific chromosomal abnormalities in malignant human gliomas. Cancer Res 48:405–411PubMed
57.
go back to reference Gadji M, Fortin D, Tsanaclis AM et al (2010) Three-dimensional nuclear telomere architecture is associated with differential time to progression and overall survival in glioblastoma patients. Neoplasia 12:183–191PubMedCentralPubMed Gadji M, Fortin D, Tsanaclis AM et al (2010) Three-dimensional nuclear telomere architecture is associated with differential time to progression and overall survival in glioblastoma patients. Neoplasia 12:183–191PubMedCentralPubMed
58.
go back to reference Louis SF, Vermolen BJ, Garini Y et al (2005) c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci U S A 102:9613–9618PubMedCentralPubMed Louis SF, Vermolen BJ, Garini Y et al (2005) c-Myc induces chromosomal rearrangements through telomere and chromosome remodeling in the interphase nucleus. Proc Natl Acad Sci U S A 102:9613–9618PubMedCentralPubMed
59.
go back to reference Rasheed BK, Wiltshire RN, Bigner SH et al (1999) Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 11:162–167PubMed Rasheed BK, Wiltshire RN, Bigner SH et al (1999) Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 11:162–167PubMed
60.
go back to reference Rich JN, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3:430–446PubMed Rich JN, Bigner DD (2004) Development of novel targeted therapies in the treatment of malignant glioma. Nat Rev Drug Discov 3:430–446PubMed
61.
go back to reference Constam DB, Philipp J, Malipiero UV et al (1992) Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148:1404–1410PubMed Constam DB, Philipp J, Malipiero UV et al (1992) Differential expression of transforming growth factor-beta 1, -beta 2, and -beta 3 by glioblastoma cells, astrocytes, and microglia. J Immunol 148:1404–1410PubMed
62.
go back to reference Schneider T, Sailer M, Ansorge S et al (2006) Increased concentrations of transforming growth factor β1 and β2 in the plasma of patients with glioblastoma. J Neurooncol 79:61–65PubMed Schneider T, Sailer M, Ansorge S et al (2006) Increased concentrations of transforming growth factor β1 and β2 in the plasma of patients with glioblastoma. J Neurooncol 79:61–65PubMed
63.
go back to reference Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al (2006) Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139PubMed Schlingensiepen KH, Schlingensiepen R, Steinbrecher A et al (2006) Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139PubMed
64.
go back to reference Gomez GG, Varella-Garcia M, Kruse CA (2006) Isolation of immunoresistant human glioma cell clones after selection with alloreactive cytotoxic T lymphocytes: cytogenetic and molecular cytogenetic characterization. Cancer Genet Cytogenet 165:121–134PubMedCentralPubMed Gomez GG, Varella-Garcia M, Kruse CA (2006) Isolation of immunoresistant human glioma cell clones after selection with alloreactive cytotoxic T lymphocytes: cytogenetic and molecular cytogenetic characterization. Cancer Genet Cytogenet 165:121–134PubMedCentralPubMed
65.
go back to reference Lassman AB, Dai C, Fuller GN et al (2004) Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol 1:157–163PubMedCentralPubMed Lassman AB, Dai C, Fuller GN et al (2004) Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol 1:157–163PubMedCentralPubMed
66.
go back to reference Ikushima H, Todo T, Ino Y et al (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Stem Cell 5:504–514 Ikushima H, Todo T, Ino Y et al (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Stem Cell 5:504–514
67.
go back to reference Seoane J, Le H-V, Shen L et al (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223PubMed Seoane J, Le H-V, Shen L et al (2004) Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117:211–223PubMed
68.
go back to reference Bruna A, Darken RS, Rojo F et al (2007) High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160PubMed Bruna A, Darken RS, Rojo F et al (2007) High TGFβ-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell 11:147–160PubMed
69.
go back to reference Song L, Liu L, Wu Z et al (2012) TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J Clin Invest 122:3563–3578PubMedCentralPubMed Song L, Liu L, Wu Z et al (2012) TGF-β induces miR-182 to sustain NF-κB activation in glioma subsets. J Clin Invest 122:3563–3578PubMedCentralPubMed
70.
go back to reference Frank SA, Nowak MA (2003) Cell biology: developmental predisposition to cancer. Nature 422:494PubMed Frank SA, Nowak MA (2003) Cell biology: developmental predisposition to cancer. Nature 422:494PubMed
71.
go back to reference Günther HS, Schmidt NO, Phillips HS et al (2007) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909PubMed Günther HS, Schmidt NO, Phillips HS et al (2007) Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene 27:2897–2909PubMed
72.
go back to reference Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMed
73.
go back to reference Frosina G (2009) DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 7:989–999PubMed Frosina G (2009) DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 7:989–999PubMed
74.
go back to reference Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMed Godlewski J, Nowicki MO, Bronisz A et al (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMed
75.
go back to reference Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967PubMedCentralPubMed Molofsky AV, Pardal R, Iwashita T et al (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967PubMedCentralPubMed
76.
go back to reference Peñuelas S, Anido J, Prieto-SAnchez RM et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327PubMed Peñuelas S, Anido J, Prieto-SAnchez RM et al (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15:315–327PubMed
77.
go back to reference Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099PubMed Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099PubMed
78.
go back to reference Bonni A (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483PubMed Bonni A (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483PubMed
79.
go back to reference Nam H-s, Benezra R (2009) High levels of Id1 expression define B1 type adult neural stem cells. Stem Cell 5:515–526 Nam H-s, Benezra R (2009) High levels of Id1 expression define B1 type adult neural stem cells. Stem Cell 5:515–526
80.
go back to reference Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344PubMed Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344PubMed
81.
go back to reference Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMed Phillips HS, Kharbanda S, Chen R et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMed
82.
go back to reference Marchetto MCN, Carromeu C, Acab A et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539PubMedCentralPubMed Marchetto MCN, Carromeu C, Acab A et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–539PubMedCentralPubMed
83.
go back to reference Tonn JC, Kerkau S, Hanke A et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80:764–772PubMed Tonn JC, Kerkau S, Hanke A et al (1999) Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80:764–772PubMed
84.
go back to reference Rooprai HK, Rucklidge GJ, Panou C et al (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82:52–55PubMedCentralPubMed Rooprai HK, Rucklidge GJ, Panou C et al (2000) The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer 82:52–55PubMedCentralPubMed
85.
go back to reference Uhm JH, Gladson CL, Rao JS (1999) The role of integrins in the malignant phenotype of gliomas. Front Biosci 4:D188–199PubMed Uhm JH, Gladson CL, Rao JS (1999) The role of integrins in the malignant phenotype of gliomas. Front Biosci 4:D188–199PubMed
86.
go back to reference Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185PubMed Wick W, Platten M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-beta. J Neurooncol 53:177–185PubMed
87.
go back to reference Huijbers IJ, Iravani M, Popov S et al (2010) A role for fibrillar collagen deposition and the collagen internalization receptor Endo180 in glioma invasion. PLoS ONE 5:e9808PubMedCentralPubMed Huijbers IJ, Iravani M, Popov S et al (2010) A role for fibrillar collagen deposition and the collagen internalization receptor Endo180 in glioma invasion. PLoS ONE 5:e9808PubMedCentralPubMed
88.
go back to reference Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514PubMed Chung AS, Lee J, Ferrara N (2010) Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer 10:505–514PubMed
89.
go back to reference Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMed Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMed
90.
go back to reference Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49:189–195PubMed Jensen RL (1998) Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49:189–195PubMed
91.
go back to reference Pepper M (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43PubMed Pepper M (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21–43PubMed
92.
go back to reference Plate K, Breier G, Weich H (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848PubMed Plate K, Breier G, Weich H (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848PubMed
93.
go back to reference Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447PubMed Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447PubMed
94.
go back to reference Kavanaugh W, Harsh G, Starksen N (1988) Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular endothelial cells. J Biol Chem 263:8470–8472PubMed Kavanaugh W, Harsh G, Starksen N (1988) Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular endothelial cells. J Biol Chem 263:8470–8472PubMed
95.
go back to reference Tsai JC, Goldman CK, Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 82:864–873PubMed Tsai JC, Goldman CK, Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 82:864–873PubMed
96.
go back to reference Wang D, Huang HJ, Kazlauskas A et al (1999) Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 59:1464–1472PubMed Wang D, Huang HJ, Kazlauskas A et al (1999) Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 59:1464–1472PubMed
97.
go back to reference Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410PubMed Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52:401–410PubMed
98.
go back to reference Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedCentralPubMed Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176PubMedCentralPubMed
99.
go back to reference Pardridge WM (2007) Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Release 122:345–348PubMedCentralPubMed Pardridge WM (2007) Blood-brain barrier delivery of protein and non-viral gene therapeutics with molecular Trojan horses. J Control Release 122:345–348PubMedCentralPubMed
100.
go back to reference Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28PubMed Rubin LL, Staddon JM (1999) The cell biology of the blood-brain barrier. Annu Rev Neurosci 22:11–28PubMed
101.
go back to reference Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124PubMed Hickey WF (2001) Basic principles of immunological surveillance of the normal central nervous system. Glia 36:118–124PubMed
102.
go back to reference Walker PR, Calzascia T, Dietrich PY (2002) All in the head: obstacles for immune rejection of brain tumours. Immunology 107:28–38PubMedCentralPubMed Walker PR, Calzascia T, Dietrich PY (2002) All in the head: obstacles for immune rejection of brain tumours. Immunology 107:28–38PubMedCentralPubMed
103.
go back to reference Quattrocchi KB, Miller CH, Cush S et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45:141–157PubMed Quattrocchi KB, Miller CH, Cush S et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45:141–157PubMed
104.
go back to reference Brooks WH, Roszman TL, Mahaley MS et al (1977) Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clin Exp Immunol 29:61–66PubMedCentralPubMed Brooks WH, Roszman TL, Mahaley MS et al (1977) Immunobiology of primary intracranial tumours. II. Analysis of lymphocyte subpopulations in patients with primary brain tumours. Clin Exp Immunol 29:61–66PubMedCentralPubMed
105.
go back to reference Dix AR, Brooks WH, Roszman TL et al (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232PubMed Dix AR, Brooks WH, Roszman TL et al (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232PubMed
106.
go back to reference Lowin-Kropf B, Shapiro VS, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140:861–871PubMedCentralPubMed Lowin-Kropf B, Shapiro VS, Weiss A (1998) Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J Cell Biol 140:861–871PubMedCentralPubMed
107.
go back to reference Woiciechowsky C, Asadullah K, Nestler D et al (1998) Diminished monocytic HLA-DR expression and ex vivo cytokine secretion capacity in patients with glioblastoma: effect of tumor extirpation. J Neuroimmunol 84:164–171PubMed Woiciechowsky C, Asadullah K, Nestler D et al (1998) Diminished monocytic HLA-DR expression and ex vivo cytokine secretion capacity in patients with glioblastoma: effect of tumor extirpation. J Neuroimmunol 84:164–171PubMed
108.
go back to reference Morford LA, Elliott LH, Carlson SL et al (1997) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 159:4415–4425PubMed Morford LA, Elliott LH, Carlson SL et al (1997) T cell receptor-mediated signaling is defective in T cells obtained from patients with primary intracranial tumors. J Immunol 159:4415–4425PubMed
109.
go back to reference Smyth M, Strobl S, Young H (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-b1. J Immunol 146:3289–3297PubMed Smyth M, Strobl S, Young H (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-b1. J Immunol 146:3289–3297PubMed
110.
go back to reference Crane CA, Han SJ, Barry JJ et al (2010) TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol 12:7–13PubMedCentralPubMed Crane CA, Han SJ, Barry JJ et al (2010) TGF-beta downregulates the activating receptor NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol 12:7–13PubMedCentralPubMed
111.
go back to reference Friese MA, Wischhusen J, Wick W et al (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603PubMed Friese MA, Wischhusen J, Wick W et al (2004) RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res 64:7596–7603PubMed
112.
go back to reference Ahuja S, Paliogianni F, Yamada H (1993) Effect of transforming growth factor-beta on early and late activation events in human T cells. J Immunol 150:3109–3118PubMed Ahuja S, Paliogianni F, Yamada H (1993) Effect of transforming growth factor-beta on early and late activation events in human T cells. J Immunol 150:3109–3118PubMed
113.
go back to reference Brooks B, Chapman K, Lawry J et al (1990) Suppression of lymphokine-activated killer (LAK) cell induction mediated by interleukin-4 and transforming growth factor-beta 1: effect of addition of exogenous tumour necrosis factor-alpha and interferon-gamma, and measurement of their endogenous production. Clin Exp Immunol 82:583–589PubMedCentralPubMed Brooks B, Chapman K, Lawry J et al (1990) Suppression of lymphokine-activated killer (LAK) cell induction mediated by interleukin-4 and transforming growth factor-beta 1: effect of addition of exogenous tumour necrosis factor-alpha and interferon-gamma, and measurement of their endogenous production. Clin Exp Immunol 82:583–589PubMedCentralPubMed
114.
go back to reference Arteaga C, Hurd S, Winnier A (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. J Clin Invest 92:2569–2576PubMedCentralPubMed Arteaga C, Hurd S, Winnier A (1993) Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. J Clin Invest 92:2569–2576PubMedCentralPubMed
115.
go back to reference Inge T, Hoover S, Susskind B et al (1992) Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor β1. Cancer Res 52:1386–1392PubMed Inge T, Hoover S, Susskind B et al (1992) Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor β1. Cancer Res 52:1386–1392PubMed
116.
go back to reference Suzumura A, Sawada M (1993) Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 151:2150–2158PubMed Suzumura A, Sawada M (1993) Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 151:2150–2158PubMed
117.
go back to reference Facoetti A, Pasi F, Nano R (2010) Some considerations for the study of TGFbeta in medium of irradiated T98G cells: activation, release and consumption. Anticancer Res 30:3341–3344PubMed Facoetti A, Pasi F, Nano R (2010) Some considerations for the study of TGFbeta in medium of irradiated T98G cells: activation, release and consumption. Anticancer Res 30:3341–3344PubMed
118.
go back to reference Gow MD, Seymour CB, Ryan LA et al (2010) Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-beta1. Radiat Res 173:769–778PubMed Gow MD, Seymour CB, Ryan LA et al (2010) Induction of bystander response in human glioma cells using high-energy electrons: a role for TGF-beta1. Radiat Res 173:769–778PubMed
119.
go back to reference Zhang M, Kleber S, Röhrich M et al (2011) Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167PubMed Zhang M, Kleber S, Röhrich M et al (2011) Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167PubMed
120.
go back to reference Hardee ME, Marciscano AE, Medina-Ramirez CM et al (2012) Resistance of glioblastoma initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β (TGFβ). Cancer Res 72:4119–4129PubMedCentralPubMed Hardee ME, Marciscano AE, Medina-Ramirez CM et al (2012) Resistance of glioblastoma initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β (TGFβ). Cancer Res 72:4119–4129PubMedCentralPubMed
121.
go back to reference Sims JT, Ganguly SS, Bennett H et al (2013) Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS ONE 8:e55509PubMedCentralPubMed Sims JT, Ganguly SS, Bennett H et al (2013) Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS ONE 8:e55509PubMedCentralPubMed
122.
go back to reference Zhang M, Herion TW, Timke C et al (2011) Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia 13:537–549PubMedCentralPubMed Zhang M, Herion TW, Timke C et al (2011) Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia 13:537–549PubMedCentralPubMed
123.
go back to reference Fakhrai H, Dorigo O, Shawler DL et al (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 93:2909–2914PubMedCentralPubMed Fakhrai H, Dorigo O, Shawler DL et al (1996) Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci U S A 93:2909–2914PubMedCentralPubMed
124.
go back to reference Hau P, Jachimczak P, Schlingensiepen R et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212PubMed Hau P, Jachimczak P, Schlingensiepen R et al (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212PubMed
125.
go back to reference Bogdahn U, Hau P, Stockhammer G et al (2011) Targeted therapy for high-grade glioma with the tgf-β2 inhibitor trabedersen: results of a randomized and controlled phase iib study. Neuro Oncol 13:132–142PubMedCentralPubMed Bogdahn U, Hau P, Stockhammer G et al (2011) Targeted therapy for high-grade glioma with the tgf-β2 inhibitor trabedersen: results of a randomized and controlled phase iib study. Neuro Oncol 13:132–142PubMedCentralPubMed
126.
go back to reference Basque J, Martel M, Leduc R et al (2008) Lysosomotropic drugs inhibit maturation of transforming growth factor-β. Can J Physiol Pharmacol 86:606–612PubMed Basque J, Martel M, Leduc R et al (2008) Lysosomotropic drugs inhibit maturation of transforming growth factor-β. Can J Physiol Pharmacol 86:606–612PubMed
127.
go back to reference Ya Y (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615 Ya Y (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615
128.
go back to reference Ueda R, Fujita M, Zhu X et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559PubMedCentralPubMed Ueda R, Fujita M, Zhu X et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15:6551–6559PubMedCentralPubMed
129.
go back to reference Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766PubMedCentralPubMed Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766PubMedCentralPubMed
130.
go back to reference DaCosta BS, Major C, Laping N (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752 DaCosta BS, Major C, Laping N (2004) SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Mol Pharmacol 65:744–752
131.
go back to reference Uhl M, Aulwurm S, Wischhusen J et al (2004) SD-208, a novel transforming growth factor receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961PubMed Uhl M, Aulwurm S, Wischhusen J et al (2004) SD-208, a novel transforming growth factor receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961PubMed
132.
go back to reference Schlingensiepen R, Goldbrunner M, Szyrach MNI et al (2005) Intracerebral and intrathecal iof the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15:94–104PubMed Schlingensiepen R, Goldbrunner M, Szyrach MNI et al (2005) Intracerebral and intrathecal iof the TGF-β2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 15:94–104PubMed
133.
go back to reference Fortin D (2012) The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr Cancer Drug Targets 12:247–259PubMed Fortin D (2012) The blood-brain barrier: its influence in the treatment of brain tumors metastases. Curr Cancer Drug Targets 12:247–259PubMed
134.
go back to reference Newton HB, Slivka MA, Volpi C et al (2003) Intra-arterial carboplatin and intravenous etoposide for the treatment of metastatic brain tumors. J Neurooncol 61:35–44PubMed Newton HB, Slivka MA, Volpi C et al (2003) Intra-arterial carboplatin and intravenous etoposide for the treatment of metastatic brain tumors. J Neurooncol 61:35–44PubMed
135.
136.
go back to reference Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037PubMed Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037PubMed
137.
go back to reference Hösli P, Sappino AP, de Tribolet N et al (1998) Malignant glioma: should chemotherapy be overthrown by experimental treatments? Ann Oncol 9:589–600PubMed Hösli P, Sappino AP, de Tribolet N et al (1998) Malignant glioma: should chemotherapy be overthrown by experimental treatments? Ann Oncol 9:589–600PubMed
138.
go back to reference Silbergeld DL, Chicoine MR (1997) Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 86:525–531PubMed Silbergeld DL, Chicoine MR (1997) Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 86:525–531PubMed
139.
go back to reference Veilleux N, Goffaux P, Boudrias M et al (2010) Quality of life in neurooncology—age matters. J Neurosurg 113:325–332PubMed Veilleux N, Goffaux P, Boudrias M et al (2010) Quality of life in neurooncology—age matters. J Neurosurg 113:325–332PubMed
Metadata
Title
Transforming growth factor-beta and its implication in the malignancy of gliomas
Authors
Laurent-Olivier Roy
Marie-Belle Poirier
David Fortin
Publication date
01-03-2015
Publisher
Springer International Publishing
Published in
Targeted Oncology / Issue 1/2015
Print ISSN: 1776-2596
Electronic ISSN: 1776-260X
DOI
https://doi.org/10.1007/s11523-014-0308-y

Other articles of this Issue 1/2015

Targeted Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine