Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

Open Access 01-12-2021 | Chloroquin | Research article

Variation in chemical composition and antimalarial activities of two samples of Terminalia albida collected from separate sites in Guinea

Authors: Aissata Camara, Mohamed Haddad, Mohamed Sahar Traore, Florence Chapeland-Leclerc, Gwenaël Ruprich-Robert, Isabelle Fourasté, Mamadou Aliou Balde, Jade Royo, Melissa Parny, Philippe Batigne, Marie Salon, Agnès Coste, Aliou Mamadou Balde, Agnès Aubouy

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

The disparity of harvesting locations can influence the chemical composition of a plant species, which could affect its quality and bioactivity. Terminalia albida is widely used in traditional Guinean medicine whose activity against malaria has been validated in vitro and in murine models. The present work investigated the antimalarial properties and chemical composition of two samples of T. albida collected from different locations in Guinea.

Method

T. albida samples were collected in different locations in Guinea, in Dubréka prefecture (West maritime Guinea) and in Kankan prefecture (eastern Guinea). The identity of the samples was confirmed by molecular analysis. In vitro antiplasmodial activity of the two extracts was determined against the chloroquine resistant strain PfK1. In vivo, extracts (100 mg/kg) were tested in two experimental murine models, respectively infected with P. chabaudi chabaudi and P. berghei ANKA. The chemical composition of the two samples was assessed by ultra-high-performance liquid chromatography coupled to high resolution mass spectrometry.

Results

In vitro, the Dubréka sample (TaD) was more active with an IC50 of 1.5 μg/mL versus 8.5 μg/mL for the extract from Kankan (TaK). In vivo, the antiparasitic effect of TaD was substantial with 56% of parasite inhibition at Day 10 post-infection in P. chabaudi infection and 61% at Day 8 in P. berghei model, compared to 14 and 19% inhibition respectively for the treatment with TaK. In addition, treatment with TaD further improved the survival of P. berghei infected-mice by 50% at Day 20, while the mortality rate of mice treated with Tak was similar to the untreated group. The LC/MS analysis of the two extracts identified 38 compounds, 15 of which were common to both samples while 9 and 14 other compounds were unique to TaD and TaK respectively.

Conclusion

This study highlights the variability in the chemical composition of the species T. albida when collected in different geographical locations. These chemical disparities were associated with variable antimalarial effects. From a public health perspective, these results underline the importance of defining chemical fingerprints related to botanical species identification and to biological activity, for the plants most commonly used in traditional medicine.
Appendix
Available only for authorised users
Literature
2.
go back to reference Matiya DJ, Philbert AB, Kidima W, Matowo JJ. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017 : a systematic review. Malar J. 2019;18(1):102.CrossRef Matiya DJ, Philbert AB, Kidima W, Matowo JJ. Dynamics and monitoring of insecticide resistance in malaria vectors across mainland Tanzania from 1997 to 2017 : a systematic review. Malar J. 2019;18(1):102.CrossRef
3.
go back to reference He Y, Campino S, Diez Benavente E, Warhurst DC, Beshir KB, Lubis I, et al. Artemisinin resistance-associated markers in Plasmodium falciparum parasites from the China-Myanmar border: predicted structural stability of K13 propeller variants detected in a low-prevalence area. PLoS One. 2019;14(3):e0213686.CrossRef He Y, Campino S, Diez Benavente E, Warhurst DC, Beshir KB, Lubis I, et al. Artemisinin resistance-associated markers in Plasmodium falciparum parasites from the China-Myanmar border: predicted structural stability of K13 propeller variants detected in a low-prevalence area. PLoS One. 2019;14(3):e0213686.CrossRef
4.
go back to reference Iwagami M, Nakatsu M, Khattignavong P, Soundala P, Keomalaphet S, Lorpachan L, et al. Heterogeneous distribution of k13 mutations in Plasmodium falciparum in Laos. Malar J. 2018;17(1):483.CrossRef Iwagami M, Nakatsu M, Khattignavong P, Soundala P, Keomalaphet S, Lorpachan L, et al. Heterogeneous distribution of k13 mutations in Plasmodium falciparum in Laos. Malar J. 2018;17(1):483.CrossRef
5.
go back to reference Garcia-Alvarez M-C, Moussa I, Njomnang Soh P, Nongonierma R, Abdoulaye A, Nicolau-Travers M-L, et al. Both plants Sebastiania chamaelea from Niger and Chrozophora senegalensis from Senegal used in African traditional medicine in malaria treatment share a same active principle. J Ethnopharmacol. 2013;149(3):676–84.CrossRef Garcia-Alvarez M-C, Moussa I, Njomnang Soh P, Nongonierma R, Abdoulaye A, Nicolau-Travers M-L, et al. Both plants Sebastiania chamaelea from Niger and Chrozophora senegalensis from Senegal used in African traditional medicine in malaria treatment share a same active principle. J Ethnopharmacol. 2013;149(3):676–84.CrossRef
6.
go back to reference Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.CrossRef Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–61.CrossRef
7.
go back to reference Conforti F, Marcotullio MC, Menichini F, Statti GA, Vannutelli L, Burini G, et al. The influence of collection zone on glucosinolates, polyphenols and flavonoids contents and biological profiles of Capparis sicula ssp. sicula. Food Sci Technol Int Cienc Tecnol Los Aliment Int. 2011;17(2):87–97. Conforti F, Marcotullio MC, Menichini F, Statti GA, Vannutelli L, Burini G, et al. The influence of collection zone on glucosinolates, polyphenols and flavonoids contents and biological profiles of Capparis sicula ssp. sicula. Food Sci Technol Int Cienc Tecnol Los Aliment Int. 2011;17(2):87–97.
9.
go back to reference Mohammadi S, Jafari B, Asgharian P, Martorell M, Sharifi-Rad J. Medicinal plants used in the treatment of malaria: a key emphasis to Artemisia, Cinchona, Cryptolepis, and Tabebuia genera. Phytother Res. 2020:1–14. Mohammadi S, Jafari B, Asgharian P, Martorell M, Sharifi-Rad J. Medicinal plants used in the treatment of malaria: a key emphasis to Artemisia, Cinchona, Cryptolepis, and Tabebuia genera. Phytother Res. 2020:1–14.
10.
go back to reference Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80(6):482–9.CrossRef Muganga R, Angenot L, Tits M, Frédérich M. In vitro and in vivo antiplasmodial activity of three Rwandan medicinal plants and identification of their active compounds. Planta Med. 2014;80(6):482–9.CrossRef
11.
go back to reference Omonkhua AA, Cyril-Olutayo MC, Akanbi OM, Adebayo OA. Antimalarial, hematological, and antioxidant effects of methanolic extract of Terminalia avicennioides in Plasmodium berghei-infected mice. Parasitol Res. 2013;112(10):3497–503.CrossRef Omonkhua AA, Cyril-Olutayo MC, Akanbi OM, Adebayo OA. Antimalarial, hematological, and antioxidant effects of methanolic extract of Terminalia avicennioides in Plasmodium berghei-infected mice. Parasitol Res. 2013;112(10):3497–503.CrossRef
12.
go back to reference Traore MS, Baldé MA, Diallo MST, Baldé ES, Diané S, Camara A, et al. Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria. J Ethnopharmacol. 2013;150(3):1145–53.CrossRef Traore MS, Baldé MA, Diallo MST, Baldé ES, Diané S, Camara A, et al. Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria. J Ethnopharmacol. 2013;150(3):1145–53.CrossRef
13.
go back to reference Traore MS, Diane S, Diallo MST, Balde ES, Balde MA, Camara A, Diallo A, Keita A, Cos P, Maes L, Pieters L, Balde AM. In vitro antiprotozoal and cytotoxic activity of ethnopharmacologically selected Guinean plants. Planta Med. 2014;80(15):1340–4.CrossRef Traore MS, Diane S, Diallo MST, Balde ES, Balde MA, Camara A, Diallo A, Keita A, Cos P, Maes L, Pieters L, Balde AM. In vitro antiprotozoal and cytotoxic activity of ethnopharmacologically selected Guinean plants. Planta Med. 2014;80(15):1340–4.CrossRef
14.
go back to reference Camara A, Haddad M, Reybier K, Traoré MS, Baldé MA, Royo J, et al. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar J. 2019;18(1):431.CrossRef Camara A, Haddad M, Reybier K, Traoré MS, Baldé MA, Royo J, et al. Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties. Malar J. 2019;18(1):431.CrossRef
15.
go back to reference Combet C, Blanchet C, Geourjon C, Deléage G. NPS@: network protein sequence analysis. Trends Biochem Sci. 2000;25(3):147–50.CrossRef Combet C, Blanchet C, Geourjon C, Deléage G. NPS@: network protein sequence analysis. Trends Biochem Sci. 2000;25(3):147–50.CrossRef
16.
go back to reference Tuenter E, Exarchou V, Baldé A, Cos P, Maes L, Apers S, et al. Cyclopeptide alkaloids from Hymenocardia acida. J Nat Prod. 2016;79(7):1746–51.CrossRef Tuenter E, Exarchou V, Baldé A, Cos P, Maes L, Apers S, et al. Cyclopeptide alkaloids from Hymenocardia acida. J Nat Prod. 2016;79(7):1746–51.CrossRef
17.
go back to reference Knight DJ, Peters W. The antimalarial activity of N-benzyloxydihydrotriazines. Ann Trop Med Parasitol. 1980;74(4):393–404.CrossRef Knight DJ, Peters W. The antimalarial activity of N-benzyloxydihydrotriazines. Ann Trop Med Parasitol. 1980;74(4):393–404.CrossRef
18.
go back to reference Langhorne J, Quin SJ, Sanni LA. Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Expert Rev Mol Med. 2006;8(6):1–22.CrossRef Langhorne J, Quin SJ, Sanni LA. Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology. Expert Rev Mol Med. 2006;8(6):1–22.CrossRef
19.
go back to reference Lou J, Lucas R, Grau GE. Pathogenesis of cerebral malaria : recent experimental data and possible applications for humans. Clin Microbiol Rev. 2001;14(4):810–20.CrossRef Lou J, Lucas R, Grau GE. Pathogenesis of cerebral malaria : recent experimental data and possible applications for humans. Clin Microbiol Rev. 2001;14(4):810–20.CrossRef
20.
go back to reference Chassagne F, Haddad M, Amiel A, Phakeovilay C, Manithip C, Bourdy G, et al. A metabolomic approach to identify anti-hepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases. Fitoterapia. 2018;127:226–36.CrossRef Chassagne F, Haddad M, Amiel A, Phakeovilay C, Manithip C, Bourdy G, et al. A metabolomic approach to identify anti-hepatocarcinogenic compounds from plants used traditionally in the treatment of liver diseases. Fitoterapia. 2018;127:226–36.CrossRef
21.
go back to reference Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186–91.CrossRef Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186–91.CrossRef
22.
go back to reference Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinform. 2016;55:14.10.1–14.10.91.CrossRef Xia J, Wishart DS. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr Protoc Bioinform. 2016;55:14.10.1–14.10.91.CrossRef
23.
go back to reference Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, et al. Hydrogen rearrangement rules : computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem. 2016;88(16):7946–58.CrossRef Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, et al. Hydrogen rearrangement rules : computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem. 2016;88(16):7946–58.CrossRef
24.
go back to reference Tian YQ, Hu GW, Guo MQ. Components and anti-HepG2 activity comparison of lycopodium alkaloids from four geographic origins. Evid Based Complement Alternat Med. 2016:4631843. Tian YQ, Hu GW, Guo MQ. Components and anti-HepG2 activity comparison of lycopodium alkaloids from four geographic origins. Evid Based Complement Alternat Med. 2016:4631843.
25.
go back to reference Kress WJ. Plant DNA barcodes: Applications today and in the future. J Syst Evol. 2017;55(4):291–307.CrossRef Kress WJ. Plant DNA barcodes: Applications today and in the future. J Syst Evol. 2017;55(4):291–307.CrossRef
26.
go back to reference Haidara M, Haddad M, Denou A, Marti G, Bourgeade-Delmas S, Sanogo R, et al. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J. 2018;17(1):68.CrossRef Haidara M, Haddad M, Denou A, Marti G, Bourgeade-Delmas S, Sanogo R, et al. In vivo validation of anti-malarial activity of crude extracts of Terminalia macroptera, a Malian medicinal plant. Malar J. 2018;17(1):68.CrossRef
27.
go back to reference Hearn J, Rayment N, Landon DN, Katz DR, de Souza JB. Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infect Immun. 2000;68(9):5364–76.CrossRef Hearn J, Rayment N, Landon DN, Katz DR, de Souza JB. Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infect Immun. 2000;68(9):5364–76.CrossRef
28.
go back to reference Liu W, Yin D, Li N, Hou X, Wang D, Li D, et al. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L and its quality assessment. Sci Rep. 2016;6:28591.CrossRef Liu W, Yin D, Li N, Hou X, Wang D, Li D, et al. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L and its quality assessment. Sci Rep. 2016;6:28591.CrossRef
29.
go back to reference Zhang X, Zhao Y, Guo L, Qiu Z, Huang L, Qu X. Differences in chemical constituents of Artemisia annua L from different geographical regions in China. PLoS One. 2017;12(9):e0183047.CrossRef Zhang X, Zhao Y, Guo L, Qiu Z, Huang L, Qu X. Differences in chemical constituents of Artemisia annua L from different geographical regions in China. PLoS One. 2017;12(9):e0183047.CrossRef
Metadata
Title
Variation in chemical composition and antimalarial activities of two samples of Terminalia albida collected from separate sites in Guinea
Authors
Aissata Camara
Mohamed Haddad
Mohamed Sahar Traore
Florence Chapeland-Leclerc
Gwenaël Ruprich-Robert
Isabelle Fourasté
Mamadou Aliou Balde
Jade Royo
Melissa Parny
Philippe Batigne
Marie Salon
Agnès Coste
Aliou Mamadou Balde
Agnès Aubouy
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03231-3

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue