Skip to main content
Top
Published in: Maxillofacial Plastic and Reconstructive Surgery 1/2016

Open Access 01-12-2016 | Research

Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model

Authors: Young-jae Baek, Jung-Han Kim, Jae-Min Song, Sang-Yong Yoon, Hong-Sung Kim, Sang-Hun Shin

Published in: Maxillofacial Plastic and Reconstructive Surgery | Issue 1/2016

Login to get access

Abstract

Background

In guided bone regeneration (GBR) technique, many materials have been used for improving biological effectiveness by adding on membranes. The new membrane which was constructed with chitin-fibroin-hydroxyapatite (CNF/HAP) was compared with a collagen membrane (Bio-Gide®) by means of micro-computed tomography.

Methods

Fifty-four rats were used in this study. A critical-sized (8 mm) bony defect was created in the calvaria with a trephine bur. The CNF/HAP membrane was prepared by thermally induced phase separation. In the experimental group (n = 18), the CNF/HAP membrane was used to cover the bony defect, and in the control group (n = 18), a resorbable collagen membrane (Bio-Gide®) was used. In the negative control group (n = 18), no membrane was used. In each group, six animals were euthanized at 2, 4, and 8 weeks after surgery. The specimens were analyzed using micro-CT.

Results

Bone volume (BV) and bone mineral density (BMD) of the new bone showed significant difference between the negative control group and membrane groups (P < 0.05). However, between two membranes, the difference was not significant.

Conclusions

The CNF/HAP membrane has significant effect on the new bone formation and has the potential to be applied for guided bone regeneration.
Literature
1.
go back to reference Ueyama Y, Ishikawa K, Mano T, Koyama T, Nagatsuka H, Suzuki K, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials. 2002;23(9):2027–33. Ueyama Y, Ishikawa K, Mano T, Koyama T, Nagatsuka H, Suzuki K, et al. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials. 2002;23(9):2027–33. 
2.
go back to reference Carvalho RS, Nelson D, Kelderman H, Wise R. Guided bone regeneration to repair an osseous defect. Am J Orthod Dentofacial Orthop. Elsevier; 2003;123(4):455–67. Carvalho RS, Nelson D, Kelderman H, Wise R. Guided bone regeneration to repair an osseous defect. Am J Orthod Dentofacial Orthop. Elsevier; 2003;123(4):455–67. 
3.
go back to reference Boyne PJ. Regeneration of alveolar bone beneath cellulose acetate filter implants. J Dental Res. 1964;43(5):827. Boyne PJ. Regeneration of alveolar bone beneath cellulose acetate filter implants. J Dental Res. 1964;43(5):827.
4.
go back to reference Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg. 2001;30(1):58–62. Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg. 2001;30(1):58–62. 
5.
go back to reference Teng SH, Lee EJ, Wang P, Shin DS, Kim HE. Three‐layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res B Appl Biomater. 2008;87(1):132-8. Teng SH, Lee EJ, Wang P, Shin DS, Kim HE. Three‐layered membranes of collagen/hydroxyapatite and chitosan for guided bone regeneration. J Biomed Mater Res B Appl Biomater. 2008;87(1):132-8.
6.
go back to reference Taguchi Y, Amizuka N, Nakadate M, Ohnishi H, Fujii N, Oda K, et al. A histological evaluation for guided bone regeneration induced by a collagenous membrane. Biomaterials. 2005;26(31):6158–66. Taguchi Y, Amizuka N, Nakadate M, Ohnishi H, Fujii N, Oda K, et al. A histological evaluation for guided bone regeneration induced by a collagenous membrane. Biomaterials. 2005;26(31):6158–66. 
7.
go back to reference Song JM, Shin SH, Kim YD, Lee JY, Baek YJ, Yoon SY, et al. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci. Nature Publishing Group; 2014;6(2):87–93. Song JM, Shin SH, Kim YD, Lee JY, Baek YJ, Yoon SY, et al. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci. Nature Publishing Group; 2014;6(2):87–93. 
8.
go back to reference Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine. J Surg Res. 2006;133(2):185–92. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic Potential of Chitosan and Its Derivatives in Regenerative Medicine. J Surg Res. 2006;133(2):185–92. 
9.
go back to reference Jin Xu, Stephen P McCarthy A, Richard A Gross, Kaplan DL. Chitosan Film Acylation and Effects on Biodegradability. Macromolecules. 1996;29(10):3436–40. Jin Xu, Stephen P McCarthy A, Richard A Gross, Kaplan DL. Chitosan Film Acylation and Effects on Biodegradability. Macromolecules. 1996;29(10):3436–40. 
10.
go back to reference Zhang R, Ma PX. Poly(Α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44(4):446–55. Zhang R, Ma PX. Poly(Α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res. 1999;44(4):446–55.  
11.
go back to reference Park SM. Preparation and characterization of acetylated chitosan-carbonated hydroxyapatite nano-composite barriers for guided bone regeneration, Pusan National University, 2011: 1–71. Park SM. Preparation and characterization of acetylated chitosan-carbonated hydroxyapatite nano-composite barriers for guided bone regeneration, Pusan National University, 2011: 1–71.
12.
go back to reference Verna C, Dalstra M, Wikesjö UM, Trombelli L. Healing patterns in calvarial bone defects following guided bone regeneration in rats. A micro-CT scan analysis. J Clin Periodontol. 2002;29(9):865–70. Verna C, Dalstra M, Wikesjö UM, Trombelli L. Healing patterns in calvarial bone defects following guided bone regeneration in rats. A micro-CT scan analysis. J Clin Periodontol. 2002;29(9):865–70.
13.
go back to reference Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Optical Soc Am A. 1984;1(6):612-9. Feldkamp LA, Davis LC, Kress JW. Practical cone-beam algorithm. J Optical Soc Am A. 1984;1(6):612-9.
14.
go back to reference Kumar MN. A review of chitin and chitosan applications. Reactive and functional polymers. 2000;46(1):1-27. Kumar MN. A review of chitin and chitosan applications. Reactive and functional polymers. 2000;46(1):1-27.
15.
go back to reference Li X, Feng Q, Cui F. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres. Materials Science and Engineering: C. 2006;26(4):716-20. Li X, Feng Q, Cui F. In vitro degradation of porous nano-hydroxyapatite/collagen/PLLA scaffold reinforced by chitin fibres. Materials Science and Engineering: C. 2006;26(4):716-20.
16.
go back to reference Madhumathi K, Kumar PS, Kavya KC, Furuike T, Tamura H, Nair SV, Jayakumar R. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int J Biol Macromolecules. 2009;45(3):289-92. Madhumathi K, Kumar PS, Kavya KC, Furuike T, Tamura H, Nair SV, Jayakumar R. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int J Biol Macromolecules. 2009;45(3):289-92.
17.
go back to reference Ge Z, Baguenard S, Lim LY, Wee A, Khor E. Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials. 2004;25(6):1049-58. Ge Z, Baguenard S, Lim LY, Wee A, Khor E. Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials. 2004;25(6):1049-58.
18.
go back to reference Tamura H, Furuike T, Nair SV, Jayakumar R. Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers. 2011;84(2):820-4. Tamura H, Furuike T, Nair SV, Jayakumar R. Biomedical applications of chitin hydrogel membranes and scaffolds. Carbohydrate Polymers. 2011;84(2):820-4.
19.
go back to reference Huang ZH, Dong YS, Chu CL, Lin PH. Electrochemistry assisted reacting deposition of hydroxyapatite in porous chitosan scaffolds. Materials Letters. 2008;62(19):3376-8. Huang ZH, Dong YS, Chu CL, Lin PH. Electrochemistry assisted reacting deposition of hydroxyapatite in porous chitosan scaffolds. Materials Letters. 2008;62(19):3376-8.
20.
go back to reference Legeros RZ, Myers H. Calcium Phosphates in Oral Biology and Medicine, vol. 15. Karger. 1991:201. Legeros RZ, Myers H. Calcium Phosphates in Oral Biology and Medicine, vol. 15. Karger. 1991:201.
21.
go back to reference Aoki H. Medical applications of hydroxyapatite: bone mineral, drug delivery system, cancer & HIV, IVH & CAPD, dental implant. Ishiyaku EuroAmerica. 1994:335. Aoki H. Medical applications of hydroxyapatite: bone mineral, drug delivery system, cancer & HIV, IVH & CAPD, dental implant. Ishiyaku EuroAmerica. 1994:335.
22.
go back to reference Chang CH, Lin FH, Lin CC, Chou CH, Liu HC. Cartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor, J Biomed Mater Res. 2004;71(2):313–21. Chang CH, Lin FH, Lin CC, Chou CH, Liu HC. Cartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor, J Biomed Mater Res. 2004;71(2):313–21.
23.
go back to reference Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26(25):5221-30. Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials. 2005;26(25):5221-30.
24.
go back to reference Wilson OC, Hull JR. Surface modification of nanophase hydroxyapatite with chitosan. Materials Science and Engineering. C. 2008;28(3):434-7. Wilson OC, Hull JR. Surface modification of nanophase hydroxyapatite with chitosan. Materials Science and Engineering. C. 2008;28(3):434-7.
25.
go back to reference Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-43. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-43.
26.
go back to reference Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res. 1999;46(3):382-9. Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res. 1999;46(3):382-9.
27.
go back to reference Kuo SM, Chang SJ, Chen TW, Kuan TC. Guided tissue regeneration for using a chitosan membrane: an experimental study in rats. J Biomed Mater Res Part A. 2006;76(2):408-15. Kuo SM, Chang SJ, Chen TW, Kuan TC. Guided tissue regeneration for using a chitosan membrane: an experimental study in rats. J Biomed Mater Res Part A. 2006;76(2):408-15.
28.
go back to reference Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP. Immobilization of bone morphogenetic protein‐2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnology and applied biochemistry. 2006;43(1):17-24. Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP. Immobilization of bone morphogenetic protein‐2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnology and applied biochemistry. 2006;43(1):17-24.
29.
go back to reference Jung UW, Song KY, Kim CS, Lee YK, Cho KS, Kim CK, Choi SH. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect. Biomedical Materials. 2007;2(3):S101-5. Jung UW, Song KY, Kim CS, Lee YK, Cho KS, Kim CK, Choi SH. Effects of a chitosan membrane coated with polylactic and polyglycolic acid on bone regeneration in a rat calvarial defect. Biomedical Materials. 2007;2(3):S101-5.
30.
go back to reference Zitzmann NU, Naef R, Schärer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997;12(6):844-52. Zitzmann NU, Naef R, Schärer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997;12(6):844-52.
31.
go back to reference Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomaterials, artificial cells and artificial organs. 1990;18(1):1-24. Chandy T, Sharma CP. Chitosan-as a biomaterial. Biomaterials, artificial cells and artificial organs. 1990;18(1):1-24.
32.
go back to reference VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res. 2002;59(3):585-90. VandeVord PJ, Matthew HW, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res. 2002;59(3):585-90.
33.
go back to reference Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials. 1999;20(2):175-82. Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials. 1999;20(2):175-82.
34.
go back to reference Jansen JA, De Ruijter JE, Janssen PT, Paquay YG. Histological evaluation of a biodegradable polyactive®/hydroxyapatite membrane. Biomaterials. 1995;16(11):819-27. Jansen JA, De Ruijter JE, Janssen PT, Paquay YG. Histological evaluation of a biodegradable polyactive®/hydroxyapatite membrane. Biomaterials. 1995;16(11):819-27.
35.
go back to reference Buser D, Dahlin C, Schenk RK. Guided bone regeneration in implant dentistry. USA; Quintessence Pub Co.; 1994:270. (ISBN :978-0867152494). Buser D, Dahlin C, Schenk RK. Guided bone regeneration in implant dentistry. USA; Quintessence Pub Co.; 1994:270. (ISBN :978-0867152494).
36.
go back to reference Schmid J, Hämmerle CH, Fliickiger L, Winkler JR, Olah AJ, Gogolewskiz S, Lang NP. Blood‐filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes. Clinical oral implants research. 1997;8(2):75-81. Schmid J, Hämmerle CH, Fliickiger L, Winkler JR, Olah AJ, Gogolewskiz S, Lang NP. Blood‐filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes. Clinical oral implants research. 1997;8(2):75-81.
Metadata
Title
Chitin-fibroin-hydroxyapatite membrane for guided bone regeneration: micro-computed tomography evaluation in a rat model
Authors
Young-jae Baek
Jung-Han Kim
Jae-Min Song
Sang-Yong Yoon
Hong-Sung Kim
Sang-Hun Shin
Publication date
01-12-2016
Publisher
Springer Berlin Heidelberg
Published in
Maxillofacial Plastic and Reconstructive Surgery / Issue 1/2016
Electronic ISSN: 2288-8586
DOI
https://doi.org/10.1186/s40902-016-0060-6

Other articles of this Issue 1/2016

Maxillofacial Plastic and Reconstructive Surgery 1/2016 Go to the issue